【題目】已知是橢圓的左、右焦點(diǎn),離心率為是平面內(nèi)兩點(diǎn),滿(mǎn)足,線(xiàn)段的中點(diǎn)在橢圓上,周長(zhǎng)為12.

1)求橢圓的方程;

2)若過(guò)的直線(xiàn)與橢圓交于,求(其中為坐標(biāo)原點(diǎn))的取值范圍.

【答案】1 2

【解析】

1)連接,由向量的性質(zhì)得出點(diǎn)是線(xiàn)段的中點(diǎn),結(jié)合中位線(xiàn)定理以及橢圓的性質(zhì)得出,再由離心率公式得出,進(jìn)而得出,即可得出橢圓方程;

2)當(dāng)直線(xiàn)的斜率不存在時(shí),將直線(xiàn),代入橢圓方程,得出坐標(biāo),利用向量數(shù)量積公式得出;當(dāng)直線(xiàn)的斜率存在時(shí),設(shè)直線(xiàn)的方程為,并代入橢圓方程,利用韋達(dá)定理得出,的值,由判別式得出的范圍,求出,利用向量的數(shù)量積公式得出,最后由不等式的性質(zhì)得出其范圍.

1)連接,,

是線(xiàn)段的中點(diǎn),是線(xiàn)段的中點(diǎn),

由橢圓的定義知,,

周長(zhǎng)為

由離心率為知,,解得

橢圓的方程為.

2)當(dāng)直線(xiàn)的斜率不存在時(shí),直線(xiàn),代入橢圓方程解得,

此時(shí),

當(dāng)直線(xiàn)的斜率存在時(shí),設(shè)直線(xiàn)的方程為

代入橢圓的方程整理得,

設(shè),則

,解得

=

,,,

綜上所述,的取值范圍為.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓的左、右焦點(diǎn)分別為,且橢圓上存在一點(diǎn),滿(mǎn)足.

(1)求橢圓的標(biāo)準(zhǔn)方程;

(2)過(guò)橢圓右焦點(diǎn)的直線(xiàn)與橢圓交于不同的兩點(diǎn),求的內(nèi)切圓的半徑的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】直線(xiàn)axby1與圓x2y21相交于A,B兩點(diǎn)(其中a,b是實(shí)數(shù)),且AOB是直角三角形(O是坐標(biāo)原點(diǎn)),則點(diǎn)P(a,b)與點(diǎn)(0,1)之間距離的最小值為( )

A.0B.C.1D.1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】《宋人撲棗圖軸》是作于宋朝的中國(guó)古畫(huà),現(xiàn)收藏于中國(guó)臺(tái)北故宮博物院.該作品簡(jiǎn)介:院角的棗樹(shù)結(jié)實(shí)累累,小孩群來(lái)攀扯,枝椏不;蝿(dòng),粒粒棗子搖落滿(mǎn)地,有的牽起衣角,有的捧著盤(pán)子拾取,又玩又吃,一片興高采烈之情,躍然于絹素之上.甲、乙、丙、丁四人想根據(jù)該圖編排一個(gè)舞蹈,舞蹈中他們要模仿該圖中小孩撲棗的爬、扶、撿、頂四個(gè)動(dòng)作,四人每人模仿一個(gè)動(dòng)作.若他們采用抽簽的方式來(lái)決定誰(shuí)模仿哪個(gè)動(dòng)作,則甲不模仿且乙不模仿的概率是(

A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)函數(shù)有兩個(gè)極值點(diǎn).

1)求實(shí)數(shù)的取值范圍;

2)求證:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù),且處切線(xiàn)垂直于軸.

1)求的值;

2)求函數(shù)上的最小值;

3)若恒成立,求滿(mǎn)足條件的整數(shù)的最大值.

(參考數(shù)據(jù),

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某中學(xué)根據(jù)學(xué)生的興趣愛(ài)好,分別創(chuàng)建了“書(shū)法”、“詩(shī)詞”、“理學(xué)”三個(gè)社團(tuán),據(jù)資料統(tǒng)計(jì)新生通過(guò)考核選拔進(jìn)入這三個(gè)社團(tuán)成功與否相互獨(dú)立.2015年某新生入學(xué),假設(shè)他通過(guò)考核選拔進(jìn)入該校的“書(shū)法”、“詩(shī)詞”、“理學(xué)”三個(gè)社團(tuán)的概率依次為、、,己知三個(gè)社團(tuán)他都能進(jìn)入的概率為,至少進(jìn)入一個(gè)社團(tuán)的概率為,且.

(1)求的值;

(2)該校根據(jù)三個(gè)社團(tuán)活動(dòng)安排情況,對(duì)進(jìn)入“書(shū)法”社的同學(xué)增加校本選修學(xué)分1分,對(duì)進(jìn)入“詩(shī)詞”社的同學(xué)增加校本選修學(xué)分2分,對(duì)進(jìn)入“理學(xué)”社的同學(xué)增加校本選修學(xué)分3分.求該新同學(xué)在社團(tuán)方面獲得校本選修課學(xué)分分?jǐn)?shù)不低于4分的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系中,曲線(xiàn)的參數(shù)方程為,其中為參數(shù),.在以坐標(biāo)原點(diǎn)為極點(diǎn),軸的正半軸為極軸的極坐標(biāo)系中,點(diǎn)的極坐標(biāo)為,直線(xiàn)的極坐標(biāo)方程為.

(1)求直線(xiàn)的直角坐標(biāo)方程與曲線(xiàn)的普通方程;

(2)若是曲線(xiàn)上的動(dòng)點(diǎn),為線(xiàn)段的中點(diǎn).求點(diǎn)到直線(xiàn)的距離的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】2013年華人數(shù)學(xué)家張益唐證明了孿生素?cái)?shù)猜想的一個(gè)弱化形式。孿生素?cái)?shù)猜想是希爾伯特在1900年提出的23個(gè)問(wèn)題之一,可以這樣描述:存在無(wú)窮多個(gè)素?cái)?shù)p,使得p+2是素?cái)?shù),素?cái)?shù)對(duì)(p,p+2)稱(chēng)為孿生素?cái)?shù).在不超過(guò)30的素?cái)?shù)中,隨機(jī)選取兩個(gè)不同的數(shù),其中能夠組成孿生素?cái)?shù)的概率是

A. B. C. D.

查看答案和解析>>

同步練習(xí)冊(cè)答案