【題目】已知橢圓的左、右焦點(diǎn)分別為,且橢圓上存在一點(diǎn),滿足.
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)過(guò)橢圓右焦點(diǎn)的直線與橢圓交于不同的兩點(diǎn),求的內(nèi)切圓的半徑的最大值.
【答案】(1);(2).
【解析】
(1)利用余弦定理和橢圓的定義即可求出a,再根據(jù)b2=a2﹣c2=3,可得橢圓的方程;(2)設(shè)A(x1,y1),B(x2,y2),設(shè)△F1AB的內(nèi)切圓的半徑為R,表示出△F1AB的周長(zhǎng)與面積,設(shè)直線l的方程為x=my+1,聯(lián)立直線與橢圓方程,利用韋達(dá)定理,表示三角形面積,令t,利用函數(shù)的單調(diào)性求解面積的最大值,然后求解△F1AB內(nèi)切圓半徑的最大值為.
(1)設(shè),則內(nèi),
由余弦定理得,化簡(jiǎn)得,解得
故,得
所以橢圓的標(biāo)準(zhǔn)方程為
(2)設(shè),設(shè)得內(nèi)切圓半徑為
的周長(zhǎng)為
所以
根據(jù)題意知,直線的斜率不為零,可設(shè)直線的方程為
由得
由韋達(dá)定理得
令,則
令,則時(shí),單調(diào)遞增,
即當(dāng)時(shí),的最大值為,此時(shí).
故當(dāng)直線的方程為時(shí),內(nèi)圓半徑的最大值為.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】下列命題中正確的是( )
A.公差為0的等差數(shù)列是等比數(shù)列B.成等比數(shù)列的充要條件是
C.公比的等比數(shù)列是遞減數(shù)列D.是成等差數(shù)列的充分不必要條件
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】下列說(shuō)法中正確的是()
A. 若函數(shù)為奇函數(shù),則;
B. 若數(shù)列為常數(shù)列,則既是等差數(shù)列也是等比數(shù)列;
C. 在中,是的充要條件;
D. 若兩個(gè)變量的相關(guān)系數(shù)為,則越大,與之間的相關(guān)性越強(qiáng).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示,四棱錐中,菱形所在的平面,是中點(diǎn),是上的點(diǎn).
(1)求證:平面平面;
(2)若是的中點(diǎn),當(dāng)時(shí),是否存在點(diǎn),使直線與平面的所成角的正弦值為?若存在,請(qǐng)求出的值,若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】下列五個(gè)命題:①直線的斜率,則直線的傾斜角的范圍是;②直線:與過(guò),兩點(diǎn)的線段相交,則或;③如果實(shí)數(shù),滿足方程,那么的最大值為;④直線與橢圓恒有公共點(diǎn),則的取值范圍是;⑤方程表示圓的充要條件是或;正確的是( )
A.②③B.③④C.②⑤D.②③⑤
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示為一正方體的平面展開(kāi)圖,在這個(gè)正方體中,有下列四個(gè)命題:
①AF⊥GC;
②BD與GC成異面直線且?jiàn)A角為60;
③BD∥MN;
④BG與平面ABCD所成的角為45.
其中正確的個(gè)數(shù)是( )
A. 1 B. 2 C. 3 D. 4
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知中心在原點(diǎn),焦點(diǎn)在軸上的橢圓,離心率,且橢圓過(guò)點(diǎn).
(1)求橢圓的方程;
(2)設(shè)橢圓左、右焦點(diǎn)分別為,過(guò)的直線與橢圓交于不同的兩點(diǎn),則的內(nèi)切圓的面積是否存在最大值?若存在,求出這個(gè)最大值及此時(shí)的直線方程;若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在正方體中,O是正方形的中心,E、F分別為棱AB、的中點(diǎn),則( )
A.直線EF與共面B.
C.平面平面D.OF與所成角為
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,已知橢圓:,設(shè)是橢圓上任一點(diǎn),從原點(diǎn)向圓:作兩條切線,分別交橢圓于點(diǎn),.
(1)若直線,互相垂直,且圓心落在第一象限,求圓的圓心坐標(biāo);
(2)若直線,的斜率都存在,并記為,.
①求證:;
②試問(wèn)是否為定值?若是,求出該定值;若不是,請(qǐng)說(shuō)明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com