【題目】如圖,在四棱錐中,平面,四邊形是菱形,,上任意一點。

(1)求證:;

(2)當面積的最小值是9時,在線段上是否存在點,使與平面所成角的正切值為2?若存在?求出的值,若不存在,請說明理由

【答案】(1)見解析;(2)

【解析】

(1)由三垂線定理AC垂直射影BD,AC垂直斜線DE。(2)面積最小時,最小,則.可得,可證平面。作于點,則平面,所以就是與平面所成角.

(1)證明:連接,設相交于點。

因為四邊形是菱形,所以。

又因為平面平面

上任意一點,平面,所以

(2)連.由(I),知平面平面,所以

面積最小時,最小,則

,解得

平面,

又由 ,而,故平面

于點,則平面,所以就是與平面所成角.

在直角三角形中,

所以,設,則。

。

,即

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】某地擬規(guī)劃種植一批芍藥,為了美觀,將種植區(qū)域(區(qū)域I)設計成半徑為1km的扇形,中心角).為方便觀賞,增加收入,在種植區(qū)域外圍規(guī)劃觀賞區(qū)(區(qū)域II)和休閑區(qū)(區(qū)域III),并將外圍區(qū)域按如圖所示的方案擴建成正方形,其中點分別在邊上.已知種植區(qū)、觀賞區(qū)和休閑區(qū)每平方千米的年收入分別是10萬元、20萬元、20萬元.

(1)要使觀賞區(qū)的年收入不低于5萬元,求的最大值;

(2)試問:當為多少時,年總收入最大?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】我國南北朝時期的數(shù)學家祖暅提出了計算幾何體體積的祖暅原理:冪勢既同,則積不容異.意思是兩個同高的幾何體,如果在等高處的截面積都相等,那么這兩個幾何體的體積相等.現(xiàn)有某幾何體和一個圓錐滿足祖暅原理的條件,若該圓錐的側面展開圖是半徑為3的圓的三分之一,則該幾何體的體積為(

A.πB.πC.4D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù).

() 若函數(shù)有零點, 求實數(shù)的取值范圍;

(Ⅱ) 證明: 當時, .

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】2019年高考前夕某地天空出現(xiàn)了一朵點贊云,為了將這朵祥云送給馬上升高三的各位學子,現(xiàn)以坐標原點為極點,軸的正半軸為極軸建立極坐標系,曲線 的極坐標方程為,在直角坐標系中,曲線的參數(shù)方程為為參數(shù)),曲線的參數(shù)方程為為參數(shù)).

(1)求曲線的直角坐標方程:

(2)點為曲線上任意一點,點為曲線上任意一點,求的最小值。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】市場份額又稱市場占有率,它在很大程度上反映了企業(yè)的競爭地位和盈利能力,是企業(yè)非常重視的一個指標.近年來,服務機器人與工業(yè)機器人以迅猛的增速占領了中國機器人領域龐大的市場份額,隨著“一帶一路”的積極推動,包括機器人產業(yè)在內的眾多行業(yè)得到了更廣闊的的發(fā)展空間,某市場研究人員為了了解某機器人制造企業(yè)的經營狀況,對該機器人制造企業(yè)2017年1月至6月的市場份額進行了調查,得到如下資料:

月份

1

2

3

4

5

6

市場份額

11

163

16

15

20

21

請根據上表提供的數(shù)據,用最小二乘法求出關于的線性回歸方程,并預測該企業(yè)2017年7月份的市場份額.

如圖是該機器人制造企業(yè)記錄的2017年6月1日至6月30日之間的產品銷售頻數(shù)(單位:天)統(tǒng)計圖.設銷售產品數(shù)量為,經統(tǒng)計,當時,企業(yè)每天虧損約為200萬元;

時,企業(yè)平均每天收入約為400萬元;

時,企業(yè)平均每天收入約為700萬元.

①設該企業(yè)在六月份每天收入為,求的數(shù)學期望;

②如果將頻率視為概率,求該企業(yè)在未來連續(xù)三天總收入不低于1200萬元的概率.

附:回歸直線的方程是,其中

,

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知焦點為的的拋物線)與圓心在坐標原點,半徑為交于,兩點,且,,其中,均為正實數(shù).

(1)求拋物線的方程;

(2)設點為劣弧上任意一點,過的切線交拋物線兩點,過,的直線,均于拋物線相切,且兩直線交于點,求點的軌跡方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知隨機變量X服從正態(tài)分布Nμσ2),且PμXμ)=0.954 4PμσXμσ)=0.682 6.μ4,σ1,則P5X6)=( )

A. 0.135 9 B. 0.135 8 C. 0.271 8 D. 0.271 6;

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在平面直角坐標系中,已知圓過坐標原點且圓心在曲線 上.

(1)若圓分別與軸、軸交于點(不同于原點),求證:的面積為定值;

(2)設直線與圓交于不同的兩點,且,求圓的方程;

(3)點在直線上,過點引圓(題(2))的兩條切線,切點為,求證:直線恒過定點.

查看答案和解析>>

同步練習冊答案