【題目】選修4-4:坐標(biāo)系與參數(shù)方程
在平面直角坐標(biāo)系中,曲線過(guò)點(diǎn),其參數(shù)方程為 (為參數(shù),),以為極點(diǎn),軸非負(fù)半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為.
(1)求曲線的普通方程和曲線的直角坐標(biāo)方程;
(2)求已知曲線和曲線交于,兩點(diǎn),且,求實(shí)數(shù)的值.
【答案】(1),(2)或.
【解析】
(1)利用參數(shù)方程、普通方程與極坐標(biāo)方程的轉(zhuǎn)化方法,求曲線的普通方程和曲線的直角坐標(biāo)方程.
(2)先將曲線的方程轉(zhuǎn)化為標(biāo)準(zhǔn)參數(shù)方程,然后將其代入曲線的直角坐標(biāo)方程中,因曲線和曲線有兩個(gè)交點(diǎn),所以整理后的關(guān)于的二次方程,初步確定的范圍,再根據(jù)參數(shù)方程的幾何意義可知,,引入已知,分類(lèi)討論,求實(shí)數(shù)的值.
(1)的參數(shù)方程,消參得普通方程為,
的極坐標(biāo)方程化為即;
(2)將曲線的參數(shù)方程標(biāo)準(zhǔn)化為(為參數(shù),)
代入曲線得,由,
得
設(shè),對(duì)應(yīng)的參數(shù)為,,由題意得即或,
當(dāng)時(shí),,解得 ,
當(dāng)時(shí),解得,
綜上:或.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)是奇函數(shù).
(1)求的值;
(2)判斷并證明函數(shù)的單調(diào)性;
(3)若對(duì)任意的,不等式恒成立,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)若始終存在實(shí)數(shù),使得函數(shù)的零點(diǎn)不唯一,則的取值范圍是( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】有兩個(gè)不透明的箱子,每個(gè)箱子都裝有4個(gè)完全相同的小球,球上分別標(biāo)有數(shù)字1,2,3,4.
(1)甲從其中一個(gè)箱子中摸出一個(gè)球,乙從另一個(gè)箱子摸出一個(gè)球,誰(shuí)摸出的球上標(biāo)的數(shù)字大誰(shuí)就獲勝(若數(shù)字相同則為平局),求甲獲勝的概率;
(2)摸球方法與(1)同,若規(guī)定:兩人摸到的球上所標(biāo)數(shù)字相同甲獲勝,所標(biāo)數(shù)字不相同則乙獲勝,這樣規(guī)定公平嗎?請(qǐng)說(shuō)明理由。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】下表為年至年某百貨零售企業(yè)的線下銷(xiāo)售額(單位:萬(wàn)元),其中年份代碼年份.
年份代碼 | ||||
線下銷(xiāo)售額 |
(1)已知與具有線性相關(guān)關(guān)系,求關(guān)于的線性回歸方程,并預(yù)測(cè)年該百貨零售企業(yè)的線下銷(xiāo)售額;
(2)隨著網(wǎng)絡(luò)購(gòu)物的飛速發(fā)展,有不少顧客對(duì)該百貨零售企業(yè)的線下銷(xiāo)售額持續(xù)增長(zhǎng)表示懷疑,某調(diào)查平臺(tái)為了解顧客對(duì)該百貨零售企業(yè)的線下銷(xiāo)售額持續(xù)增長(zhǎng)的看法,隨機(jī)調(diào)查了位男顧客、位女顧客(每位顧客從“持樂(lè)觀態(tài)度”和“持不樂(lè)觀態(tài)度”中任選一種),其中對(duì)該百貨零售企業(yè)的線下銷(xiāo)售額持續(xù)增長(zhǎng)持樂(lè)觀態(tài)度的男顧客有人、女顧客有人,能否在犯錯(cuò)誤的概率不超過(guò)的前提下認(rèn)為對(duì)該百貨零售企業(yè)的線下銷(xiāo)售額持續(xù)增長(zhǎng)所持的態(tài)度與性別有關(guān)?
參考公式及數(shù)據(jù):
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】(本小題滿分12分)
如圖在直三棱柱ABC—A1B1C1中,AC=3,BC=4,AB=5,AA1=4,點(diǎn)D是AB的
中點(diǎn).
(1) 求證: AC⊥BC1
(2) 求證:AC1∥平面CDB1
(3) 求異面直線AC1與B1C所成角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】有6本不同的書(shū),按下列方式進(jìn)行分配,其中分配種數(shù)正確的是( )
A.分給甲乙丙三人,每人各2本,有90種分法;
B.分給甲乙丙三人中,一人4本,另兩人各1本,有90種分法;
C.分給甲乙每人各2本,分給丙丁每人各1本,有180種分法;
D.分給甲乙丙丁四人,有兩人各2本,另兩人各1本,有2160種分法;
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知圓上一點(diǎn)關(guān)于直線的對(duì)稱(chēng)點(diǎn)仍在圓上,直線截得圓的弦長(zhǎng)為.
(1)求圓的方程;
(2)設(shè)是直線上的動(dòng)點(diǎn),是圓的兩條切線,為切點(diǎn),求四邊形面積的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】央視傳媒為了解央視舉辦的“朗讀者”節(jié)目的收視時(shí)間情況,隨機(jī)抽取了某市名觀眾進(jìn)行調(diào)查,其中有名男觀眾和名女觀眾,將這名觀眾收視時(shí)間編成如圖所示的莖葉圖(單位:分鐘),收視時(shí)間在分鐘以上(包括分鐘)的稱(chēng)為“朗讀愛(ài)好者”,收視時(shí)間在分鐘以下(不包括分鐘)的稱(chēng)為“非朗讀愛(ài)好者”.規(guī)定只有女“朗讀愛(ài)好者”可以參加央視競(jìng)選.
(1)若采用分層抽樣的方法從“朗讀愛(ài)好者”和“非朗讀愛(ài)好者”中隨機(jī)抽取名,再?gòu)倪@名觀眾中任選名,求至少選到名“朗讀愛(ài)好者”的概率;
(2)若從所有的“朗讀愛(ài)好者”中隨機(jī)抽取名,求抽到的名觀眾中能參加央視競(jìng)選的人數(shù)的分布列及其數(shù)學(xué)期望.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com