17.執(zhí)行如圖所示的流程圖,則輸出的M應(yīng)為2 

分析 模擬執(zhí)行程序,依次寫出每次循環(huán)得到的M,i的值,當(dāng)i=4不滿足條件,退出循環(huán),輸出M的值為2.

解答 解:由題意,執(zhí)行程序框圖,可得
i=1,滿足條件,則M=$\frac{1}{1-2}$=-1,
i=2,滿足條件,則M=$\frac{1}{1-(-1)}$=$\frac{1}{2}$,
i=3,滿足條件,則M=$\frac{1}{1-\frac{1}{2}}$=2,
i=4不滿足條件,退出循環(huán),輸出M的值為2.
故答案為:2

點(diǎn)評 本題考查了循環(huán)結(jié)構(gòu)的程序框圖,根據(jù)框圖的流程判斷程序運(yùn)行的功能是解答此類問題的關(guān)鍵,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.已知$\overrightarrow a$=(-2,1),$\overrightarrow b$=(1,λ),若$\overrightarrow a$∥$\overrightarrow b$,則λ=$-\frac{1}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.已知橢圓E:$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$的左、右焦點(diǎn)分別為F1、F2,離心率$e=\frac{{\sqrt{2}}}{2}$,P為橢圓E上的任意一點(diǎn)(不含長軸端點(diǎn)),且△PF1F2面積的最大值為1.
(Ⅰ)求橢圓E的方程;
(Ⅱ)已知直x-y+m=0與橢圓E交于不同的兩點(diǎn)A,B,且線AB的中點(diǎn)不在圓${x^2}+{y^2}=\frac{5}{9}$內(nèi),求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.若實(shí)數(shù)x,y滿足約束條件$\left\{\begin{array}{l}x-y≥0\\ x+y-4≥0\\ x≤5\end{array}\right.$,則$\frac{y}{x}$的最小值為-$\frac{1}{5}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.設(shè)數(shù)列{an}的前n項(xiàng)和為Sn,a1=1,且n•an+1=(n+2)Sn,n∈N*
(1)求證:數(shù)列$\left\{{\frac{S_n}{n}}\right\}$為等比數(shù)列;
(2)求數(shù)列{Sn}的前n項(xiàng)和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.已知f(x)=cos($\frac{x}{2}$-$\frac{π}{4}$),若f(α)=$\frac{1}{3}$,則sinα=-$\frac{7}{9}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.已知函數(shù)f(x)=$\frac{sinx}{e^x}$,定義域?yàn)閇0,2π],g(x) 為f(x) 的導(dǎo)函數(shù).
(1)求方程g(x)=0 的解集;
(2)求函數(shù)g(x) 的最大值與最小值;
(3)若函數(shù)F(x)=f(x)-ax 在定義域上恰有2個(gè)極值點(diǎn),求實(shí)數(shù)a 的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.拋物線x2=2py(p>0)的準(zhǔn)線方程為y=-$\frac{1}{2}$,則拋物線方程為x2=2y.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.已知函數(shù)f(x)=x2+2mx+3m+4,
(1)若f(x)在(-∞,1]上單調(diào)遞減,求m的取值范圍;
(2)求f(x)在[0,2]上的最大值g(m).

查看答案和解析>>

同步練習(xí)冊答案