20.甲、乙等4名實(shí)習(xí)生到某醫(yī)院的內(nèi)科、外科、口腔科3個(gè)科室進(jìn)行實(shí)習(xí),每個(gè)科室至少分配1名,且甲不能去口腔科,則不同的分配方案種數(shù)為( 。
A.54B.36C.24D.18

分析 根據(jù)題意中甲要求不到A學(xué)校,分析可得對甲有2種不同的分配方法,進(jìn)而對剩余的三人分情況討論,①其中有一個(gè)人與甲在同一個(gè)科室,②沒有人與甲在同一個(gè)科室,易得其情況數(shù)目,最后由分步計(jì)數(shù)原理計(jì)算可得答案.

解答 解:根據(jù)題意,首先分配甲,有2種方法,
再分配其余的三人:分兩種情況,①其中有一個(gè)人與甲在同一個(gè)科室,有A33=6種情況,
②沒有人與甲在同一個(gè)科室,則有C32•A22=6種情況;
則若甲要求不到口腔科,則不同的分配方案有2×(6+6)=24種;
故選:C.

點(diǎn)評 本題考查排列、組合的綜合運(yùn)用,注意題意中“每個(gè)科室至少分配1名”這一條件,再分配甲之后,需要對其余的三人分情況討論.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.現(xiàn)有9本不同的書,分別求下列情況的不同分法的種數(shù).
(1)分成三組,一組4本,一組3本,一組2本;
(2)分給三人,一人4本,一人3本,一人2本;
(3)平均分成三組.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.已知各項(xiàng)均為正數(shù)的數(shù)列{an}滿足log2an-log2an-1=1n∈N*,n≥2,且a4=16.
(Ⅰ)求數(shù)列{an}的通項(xiàng)公式;
(Ⅱ)設(shè)數(shù)列{bn}滿足bn=$\frac{{na_n^{\;}}}{{(2n+1)•{2^n}}}$,是否存在正整數(shù)m,n(1<m<n),使得b1,bm,bn成等比數(shù)列?若存在,求出所有的m,n的值;若不存在,請說明理由.
(Ⅲ)令cn=$\frac{2n+4}{{n(n+1){a_n}}}$,記數(shù)列{cn}的前n項(xiàng)和為Sn,其中n∈N*,證明:$\frac{3}{2}$≤Sn<2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.不等式$\frac{{{x^2}+2x-3}}{{-{x^2}+x+6}}$≥0的解集為[-3,-2)∪[1,3).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.若z=$\frac{2i}{-1+i}$,則復(fù)數(shù)z的虛部為( 。
A.iB.1C.-iD.-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.已知曲線$\frac{{x}^{2}}{4}$-y2=1 通過$\left\{\begin{array}{l}{x′=\frac{1}{2}x}\\{y′=2y}\end{array}\right.$伸縮變換后得到的曲線方程為x2-$\frac{{y}^{2}}{4}$=1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.已知漸近線方程為y=±$\frac{2}{3}$x且經(jīng)過P(${\sqrt{6}$,2),求該雙曲線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.已知直線l:y=$\frac{1}{2}$x和兩定點(diǎn)A(1,1)、B(2,2),在直線l上取一點(diǎn)P,使PA2+PB2最小,試求點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.某醫(yī)學(xué)院將6名大學(xué)生分配到某醫(yī)院的3個(gè)科室實(shí)習(xí),每個(gè)科室至少1人,則不同的分配方案的種數(shù)是( 。
A.360B.90C.540D.2160

查看答案和解析>>

同步練習(xí)冊答案