5.已知曲線$\frac{{x}^{2}}{4}$-y2=1 通過$\left\{\begin{array}{l}{x′=\frac{1}{2}x}\\{y′=2y}\end{array}\right.$伸縮變換后得到的曲線方程為x2-$\frac{{y}^{2}}{4}$=1.

分析 利用代入法,即可得到伸縮變換的曲線方程.

解答 解:∵$\left\{\begin{array}{l}{x′=\frac{1}{2}x}\\{y′=2y}\end{array}\right.$,
∴x=2x′,y=$\frac{1}{2}$y′,
代入曲線$\frac{{x}^{2}}{4}$-y2=1可得$\frac{4x{′}^{2}}{4}-\frac{y{′}^{2}}{4}$=1,即x2-$\frac{{y}^{2}}{4}$=1.
故答案為:x2-$\frac{{y}^{2}}{4}$=1.

點(diǎn)評 本題考查代入法求軌跡方程,考查學(xué)生的計(jì)算能力,比較基礎(chǔ).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.把$\lim_{n→+∞}\frac{1}{n}$($\frac{1}{n}$+$\frac{2}{n}$+$\frac{3}{n}$+…+$\frac{n-1}{n}$+1)寫成定積分式為${∫}_{0}^{1}$xdx.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.若0<α<$\frac{π}{2}$,$\frac{π}{2}$<β<π,cos(α+$\frac{π}{4}$)=$\frac{1}{3}$,sin($\frac{β}{2}$+$\frac{π}{4}$)=$\frac{{\sqrt{3}}}{3}$,則cos(α-$\frac{β}{2}$)=(  )
A.-$\frac{{\sqrt{6}}}{9}$B.$\frac{{\sqrt{6}}}{9}$C.-$\frac{{\sqrt{3}}}{3}$D.$\frac{{\sqrt{3}}}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.直線$\left\{\begin{array}{l}x=2t-1\\ y=t+1\end{array}\right.$(t為參數(shù)) 被圓x2+y2=9截得的弦長等于( 。
A.$\frac{12}{5}$B.$\frac{{12\sqrt{5}}}{5}$C.$\frac{{9\sqrt{2}}}{5}$D.$\frac{{9\sqrt{10}}}{5}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.甲、乙等4名實(shí)習(xí)生到某醫(yī)院的內(nèi)科、外科、口腔科3個(gè)科室進(jìn)行實(shí)習(xí),每個(gè)科室至少分配1名,且甲不能去口腔科,則不同的分配方案種數(shù)為( 。
A.54B.36C.24D.18

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.設(shè)雙曲線與橢圓$\frac{{x}^{2}}{27}$+$\frac{{y}^{2}}{36}$=1有相同的焦點(diǎn),且與橢圓相交,一個(gè)交點(diǎn)A的縱坐標(biāo)為4,求:
(1)雙曲線的標(biāo)準(zhǔn)方程.
(2)若直線L過A(-1,2),且與雙曲線漸近線y=kx(k>0)垂直,求直線L的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.在等差數(shù)列{an}中,a1=2,d=3,則a6=17.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.已知隨機(jī)變量X的分布列為P(X=k)=$\frac{1}{3}$,k=3,6,9.則D(X)等于( 。
A.6B.9C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.在△ABC中,若∠B為鈍角,則sinB-sinA的值( 。
A.大于零B.小于零C.等于零D.不能確定

查看答案和解析>>

同步練習(xí)冊答案