精英家教網 > 高中數學 > 題目詳情
已知橢圓C:+=1(a>b>0)的一個頂點為A(2,0),離心率為.直線y=k(x-1)與橢圓C交于不同的兩點M,N.
(1)求橢圓C的方程;
(2)當△AMN的面積為時,求k的值.
(1) +=1   (2) k=±1

解:(1)由題設知,橢圓焦點在x軸上,
∴a=2.
由e==得c=,
∴b2=a2-c2=2.
∴橢圓C的方程為+=1.
(2)由消去y,
整理得(1+2k2)x2-4k2x+2k2-4=0.
設M(x1,y1),N(x2,y2).
則Δ=(-4k2)2-4(1+2k2)(2k2-4)>0(※)
且x1+x2=,x1·x2=,
∴|MN|=
=
=
=
=
設點A(2,0)到直線y=k(x-1)的距離為d,
則d=.
∴S△AMN=|MN|·d==,
解得k=±1,
代入(※)式成立,∴k=±1.
練習冊系列答案
相關習題

科目:高中數學 來源:不詳 題型:解答題

已知橢圓的中心為原點,離心率,其一個焦點在拋物線的準線上,若拋物線與直線相切.
(1)求該橢圓的標準方程;
(2)當點在橢圓上運動時,設動點的運動軌跡為.若點滿足:,其中上的點,直線的斜率之積為,試說明:是否存在兩個定點,使得為定值?若存在,求的坐標;若不存在,說明理由.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

橢圓=1的焦點為F1、F2,點P為橢圓上的動點,當∠F1PF2為鈍角時,求點P的橫坐標x0的取值范圍.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:單選題

是方程表示橢圓或雙曲線的 (  )
A.充分不必要條件 B.必要不充分條件
C.充要條件 D.不充分不必要條件

查看答案和解析>>

科目:高中數學 來源:不詳 題型:單選題

如圖,F1,F2是橢圓C1:+y2=1與雙曲線C2的公共焦點,A,B分別是C1,C2在第二、四象限的公共點.若四邊形AF1BF2為矩形,則C2的離心率是(  )
A.B.C.D.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:單選題

橢圓+=1上有兩個動點P、Q,E(3,0),EP⊥EQ,則·的最小值為(  )
A.6B.3-C.9D.12-6

查看答案和解析>>

科目:高中數學 來源:不詳 題型:填空題

已知F1、F2是橢圓C:+=1(a>b>0)的兩個焦點,P為橢圓C上一點,且,若△PF1F2的面積為9,則b=    .

查看答案和解析>>

科目:高中數學 來源:不詳 題型:單選題

如圖,內外兩個橢圓的離心率相同,從外層橢圓頂點向內層橢圓引切線AC,BD,設內層橢圓方程為 ,若直線AC與BD的斜率之積為,則橢圓的離心率為(  )
A.B.C.D.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:單選題

橢圓+=1的離心率為(  )
A.B.C.D.

查看答案和解析>>

同步練習冊答案