精英家教網 > 高中數學 > 題目詳情

【題目】已知函數,把函數的圖象向右平移個單位,再把圖象上所有的點的橫坐標縮小到原來的一半(縱坐標不變),得到函數的圖象,則下列結論正確的是(

A.的最小正周期為B.的圖象關于直線對稱

C.的一個零點為D.上單調遞減

【答案】D

【解析】

把函數的圖像進行伸縮變換得到圖像,分別求出的周期、對稱軸、零點、單調遞減區(qū)間進行判斷即可.

解:把函數的圖象向右平移個單位,

可得的圖像,

再把圖象上所有的點的橫坐標縮小到原來的一半(縱坐標不變),

得到函數的圖象;

由函數可知:

的最小正周期為,故A錯誤;

對稱軸為,所以,,給賦值,取不到,故B錯誤;

零點為,所以,,給賦值,取不到,故C錯誤;

,,

所以單調遞減區(qū)間為,

時,,故D正確.

故選:D.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】已知橢圓的離心率為,且以橢圓的兩焦點和短軸的一個端點為頂點的三角形的周長恰為.

1)求橢圓的標準方程;

2)動直線與拋橢圓相交于兩點,問:在軸上是否存在定點(其中,使得向量與向量共線(其中為坐標原點)?若存在,求出點的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】在極坐標系中,直線lP為直線l上一點,且點P在極軸上方OP為一邊作正三角形逆時針方向,且面積為

Q點的極坐標;

外接圓的極坐標方程,并判斷直線l外接圓的位置關系.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知橢圓的方程為,是橢圓上的一點,且在第一象限內,過且斜率等于-1的直線與橢圓交于另一點,點關于原點的對稱點為

(1)證明:直線的斜率為定值;

(2)求面積的最大值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】現有個小球,甲、乙兩位同學輪流且不放回抓球,每次最少抓1個球,最多抓3個球,規(guī)定誰抓到最后一個球誰贏. 如果甲先抓,那么下列推斷正確的是(

A. =4,則甲有必贏的策略 B. =6,則乙有必贏的策略

C. =9,則甲有必贏的策略 D. =11,則乙有必贏的策略

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】在直角坐標系中,曲線的參數方程為為參數),以坐標原點為極點,軸的正半軸為極軸,取相同長度單位建立極坐標系,直線的極坐標方程為.

(Ⅰ)求曲線和直線的直角坐標方程;

(Ⅱ)直線軸交點為,經過點的直線與曲線交于,兩點,證明:為定值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數,,其中是自然對數的底數.

,使得不等式成立,試求實數的取值范圍;

)若,求證:

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數

討論函數的極值點的個數;

若函數有兩個極值點,,證明:

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知四棱錐的底面ABCD為菱形,,側面PAD與底面ABCD所成的角為,是等邊三角形,點P到平面ABCD距離為

1)證明:;

2)求二面角余弦值.

查看答案和解析>>

同步練習冊答案