【題目】已知函數(shù)

(1),證明:當(dāng);

(2)設(shè),若函數(shù)上有2個(gè)不同的零點(diǎn),求實(shí)數(shù)的取值范圍.

【答案】(1)見(jiàn)解析;(2)

【解析】

(1) 當(dāng)a=1時(shí).. 明確單調(diào)性求出最大值即可;(2),討論a的范圍,易知當(dāng)時(shí),沒(méi)有零;當(dāng)時(shí),研究函數(shù)的單調(diào)性,明確圖象與x軸的交點(diǎn)情況即可.

(1)當(dāng)a=1時(shí)..

.

因?yàn)?/span>,所以,

所以時(shí)單調(diào)遞減,

所以,即.

(2)法一

(i)當(dāng)時(shí),沒(méi)有零;

(ii)當(dāng)時(shí),

當(dāng)時(shí),;當(dāng)時(shí),.

所以上單調(diào)遞減,在上單調(diào)遞增.

上的最小值

①若,即時(shí),上沒(méi)有零點(diǎn);

②若,即時(shí),上只有1個(gè)零點(diǎn);

③若,即時(shí),由于,所以在(0,2)上有1個(gè)零點(diǎn),

由(1)知,當(dāng)時(shí),

因?yàn)?/span>,

所以.

在(2,4a)上有1個(gè)零點(diǎn),因此上有2個(gè)不同的零點(diǎn)。

綜上,上有2個(gè)不同的零點(diǎn)時(shí),a的取值范圍是.

法二:因?yàn)?/span>

所以上零點(diǎn)的個(gè)數(shù)即為方程上根的個(gè)數(shù)。

.

,

x=2.

當(dāng)時(shí),,當(dāng)時(shí),

所以當(dāng)時(shí),單調(diào)遞增,

當(dāng)時(shí),單調(diào)遞減,

所以上的最大值為

由(1)知,當(dāng)時(shí),,

即當(dāng)時(shí),

因?yàn)楫?dāng)x無(wú)限增大時(shí),→0,所以當(dāng)x無(wú)限增大時(shí),→0,

又因?yàn)?/span>,所以當(dāng)且僅當(dāng)時(shí),

函數(shù)上的圖象與直線(xiàn)恰好有2個(gè)不同的交點(diǎn),

即當(dāng)且僅當(dāng)a>一時(shí),函數(shù)h(x)在(0,+oo)上有2個(gè)不同的零點(diǎn),

上有2個(gè)不同的零點(diǎn)時(shí),a的取值范圍是

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某高校在2012年的自主招生考試成績(jī)中隨機(jī)抽取名中學(xué)生的筆試成績(jī),按成績(jī)分組,得到的頻率分布表如表所示.

組號(hào)

分組

頻數(shù)

頻率

第1組

5

第2組

第3組

30

第4組

20

第5組

10

(1)請(qǐng)先求出頻率分布表中位置的相應(yīng)數(shù)據(jù),再完成頻率分布直方圖;

(2)為了能選拔出最優(yōu)秀的學(xué)生,高校決定在筆試成績(jī)高的第組中用分層抽樣抽取名學(xué)生進(jìn)入第二輪面試,求第3、4、5組每組各抽取多少名學(xué)生進(jìn)入第二輪面試;

(3)在(2)的前提下,學(xué)校決定在名學(xué)生中隨機(jī)抽取名學(xué)生接受考官進(jìn)行面試,求:第組至少有一名學(xué)生被考官面試的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某種產(chǎn)品的廣告費(fèi)支出x(單位:百萬(wàn)元)與銷(xiāo)售額y(單位:百萬(wàn)元)之間有如下的對(duì)應(yīng)數(shù)據(jù):

x

2

4

5

6

8

y

30

40

60

50

70

1)畫(huà)出散點(diǎn)圖;

2)求y關(guān)于x的線(xiàn)性回歸方程.

3)如果廣告費(fèi)支出為一千萬(wàn)元,預(yù)測(cè)銷(xiāo)售額大約為多少百萬(wàn)元?

參考公式用最小二乘法求線(xiàn)性回歸方程系數(shù)公式:,.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】對(duì)下列命題:

①直線(xiàn)與函數(shù)的圖象相交,則相鄰兩交點(diǎn)的距離為;

②點(diǎn) 是函數(shù)的圖象的一個(gè)對(duì)稱(chēng)中心;

③函數(shù)上單調(diào)遞減,則的取值范圍為;

④函數(shù)對(duì)R恒成立,則.

其中所有正確命題的序號(hào)為____

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】若函數(shù)對(duì)定義域內(nèi)的每一個(gè)值,在其定義域內(nèi)都存在唯一的,使成立,則該函數(shù)為“依附函數(shù)”.

(1)判斷函數(shù)是否為“依附函數(shù)”,并說(shuō)明理由;

(2)若函數(shù)在定義域上“依附函數(shù)”,求的取值范圍;

(3)已知函數(shù)在定義域上為“依附函數(shù)”.若存在實(shí)數(shù),使得對(duì)任意的,不等式都成立,求實(shí)數(shù)的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù),.

1)若曲線(xiàn)在點(diǎn)處有相同的切線(xiàn),求函數(shù)的極值;

2)若,討論函數(shù)的單調(diào)性.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知雙曲線(xiàn)的焦點(diǎn)是橢圓 )的頂點(diǎn),且橢圓與雙曲線(xiàn)的離心率互為倒數(shù).

(Ⅰ)求橢圓的方程;

(Ⅱ)設(shè)動(dòng)點(diǎn), 在橢圓上,且,記直線(xiàn)軸上的截距為,求的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)fxk>0)

(1)若fx)>m的解集為{x|x<-3,或x>-2},求不等式5mx2+kx+3>0的解集;

(2)若存在x>3,使得fx)>1成立,求k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】推進(jìn)垃圾分類(lèi)處理,是落實(shí)綠色發(fā)展理念的必然選擇,也是打贏(yíng)污染防治攻堅(jiān)戰(zhàn)的重要環(huán)節(jié).為了解居民對(duì)垃圾分類(lèi)的了解程度某社區(qū)居委會(huì)隨機(jī)抽取1000名社區(qū)居民參與問(wèn)卷測(cè)試,并將問(wèn)卷得分繪制頻率分布表如表:

得分

[30,40

[40,50

[50,60

[60,70

[70,80

[8090

[90,100]

男性人數(shù)

40

90

120

130

110

60

30

女性人數(shù)

20

50

80

110

100

40

20

1)從該社區(qū)隨機(jī)抽取一名居民參與問(wèn)卷測(cè)試試估計(jì)其得分不低于60分的概率:

2)將居民對(duì)垃圾分類(lèi)的了解程度分為“比較了解”(得分不低于60分)和“不太了解”(得分低于60)兩類(lèi),完成2×2列聯(lián)表,并判斷是否有95%的把握認(rèn)為“居民對(duì)垃圾分類(lèi)的了解程度”與“性別”有關(guān)?

不太了解

比較了解

合計(jì)

男性

女性

合計(jì)

3)從參與問(wèn)卷測(cè)試且得分不低于80分的居民中,按照性別進(jìn)行分層抽樣,共抽取10人,現(xiàn)從這10人中隨機(jī)抽取3人作為環(huán)保宣傳隊(duì)長(zhǎng),設(shè)3人中男性隊(duì)長(zhǎng)的人數(shù)為,求的分布列和期望.

附:

臨界值表:

0.15

0.10

0.05

0.025

0.010

0.005

2.072

2.706

3.841

5.024

6.635

7.879

查看答案和解析>>

同步練習(xí)冊(cè)答案