如圖,一簡單組合體的一個(gè)面ABC內(nèi)接于圓O,AB是圓O的直徑,四邊形DCBE為平行四邊形,且DC平面ABC.
(1)證明:平面ACD平面;
(2)若,,,試求該簡單組合體的體積V.
(1)詳見解析;(2)該簡單幾何體的體積.
解析試題分析:(1)欲證平面⊥平面,證明面面垂直,先證線面垂直,即證一個(gè)平面過另一個(gè)平面的垂線,本題根據(jù)面面垂直的判定定理可知在平面內(nèi)找一條直線與平面垂直,而由已知平面,,可得平面,從而可得平面⊥平面;(2)所求簡單組合體的體積進(jìn)行分解:,然后利用體積公式進(jìn)行求解,關(guān)鍵是幾何體的高的求解.
試題解析:(1)證明:∵ DC平面ABC ,平面ABC
∴. .1分
∵AB是圓O的直徑 ∴且
∴平面ADC. 3分
∵四邊形DCBE為平行四邊形 ∴DE//BC
∴平面ADC 5分
又∵平面ADE ∴平面ACD平面 ..6分
(2)所求簡單組合體的體積:
∵,,
∴, 10分
∴
∴該簡單幾何體的體積 12分
考點(diǎn):平面與平面垂直的判定;棱柱、棱錐、棱臺的體積.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
(2014·貴陽模擬)一個(gè)幾何體是由圓柱ADD1A1和三棱錐E-ABC組合而成,點(diǎn)A,B,C在圓O的圓周上,其正(主)視圖,側(cè)(左)視圖的面積分別為10和12,如圖所示,其中EA⊥平面ABC,AB⊥AC,AB=AC.AE=2.
(1)求證:AC⊥BD.
(2)求三棱錐E-BCD的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,直三棱柱ABC-A1B1C1中,D、E分別是AB、BB1的中點(diǎn).
(1)證明:BC1//平面A1CD;
(2)設(shè)AA1=AC=CB=2,AB=,求三棱錐C一A1DE的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖1,在直角梯形中,,.把沿折起到的位置,使得點(diǎn)在平面上的正投影恰好落在線段上,如圖2所示,點(diǎn)分別為棱的中點(diǎn).
(1)求證:平面平面;
(2)求證:平面;
(3)若,求四棱錐的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖甲,是邊長為6的等邊三角形,分別為靠近的三等分點(diǎn),點(diǎn)為邊邊的中點(diǎn),線段交線段于點(diǎn).將沿翻折,使平面平面,連接,形成如圖乙所示的幾何體.
(1)求證:平面
(2)求四棱錐的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖甲,⊙O的直徑AB=2,圓上兩點(diǎn)C、D在直徑AB的兩側(cè),且∠CAB=,∠DAB=.沿直徑AB折起,使兩個(gè)半圓所在的平面互相垂直(如圖乙),F為BC的中點(diǎn),E為AO的中點(diǎn).根據(jù)圖乙解答下列各題:
(1)求三棱錐C-BOD的體積;
(2)求證:CB⊥DE;
(3)在上是否存在一點(diǎn)G,使得FG∥平面ACD?若存在,試確定點(diǎn)G的位置;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,在三棱柱ABC-A1B1C1中,CA=CB,AB=AA1,∠BAA1=60°.
(1)證明:AB⊥A1C;
(2)若AB=CB=2,A1C=,求三棱柱ABC-A1B1C1的體積;
(3)若平面ABC⊥平面AA1B1B,AB=CB=2,求直線A1C與平面BB1C1C所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,底面邊長為a,高為h的正三棱柱ABC-A1B1C1,其中D是AB的中點(diǎn),E是BC的三等分點(diǎn).求幾何體BDEA1B1C1的體積.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com