【題目】如圖,已知四棱錐中,底面為菱形,且,是邊長(zhǎng)為的正三角形,且平面平面,已知點(diǎn)是的中點(diǎn).
(Ⅰ)證明:平面;
(Ⅱ)求三棱錐的體積.
【答案】(1)證明見解析;(2).
【解析】試題分析:(1)連結(jié)交于,連結(jié),由中位線定理可得,根據(jù)線面平行的判定定理可得平面;(2)取中點(diǎn),連結(jié),則平面,由,即可求出三棱錐的體積.
試題解析:(Ⅰ)連結(jié)交于,連結(jié),
因?yàn)?/span>為菱形,,所以,
由直線不在平面內(nèi),平面,
所以平面.
(Ⅱ)取的中點(diǎn),連接,則,且.
因?yàn)槠矫?/span>平面,所以平面.
所以,
又是中點(diǎn),所以.
所以 .
【方法點(diǎn)晴】本題主要考查線面平行的判定定理、面面垂直的性質(zhì)、線面垂直的判定、利用等積變換求三棱錐體積,屬于難題.證明線面平行的常用方法:①利用線面平行的判定定理,使用這個(gè)定理的關(guān)鍵是設(shè)法在平面內(nèi)找到一條與已知直線平行的直線,可利用幾何體的特征,合理利用中位線定理、線面平行的性質(zhì)或者構(gòu)造平行四邊形、尋找比例式證明兩直線平行.②利用面面平行的性質(zhì),即兩平面平行,在其中一平面內(nèi)的直線平行于另一平面. 本題(1)是就是利用方法①證明的.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某省的一個(gè)氣象站觀測(cè)點(diǎn)在連續(xù)4天里記錄的指數(shù)與當(dāng)天的空氣水平可見度(單位: )的情況如表1:
該省某市2016年11月指數(shù)頻數(shù)分布如表2:
頻數(shù) | 3 | 6 | 12 | 6 | 3 |
(1)設(shè),根據(jù)表1的數(shù)據(jù),求出關(guān)于的線性回歸方程;
(附參考公式: ,其中, )
(2)小李在該市開了一家洗車店,經(jīng)統(tǒng)計(jì),洗車店平均每天的收入與指數(shù)由相關(guān)關(guān)系,如表3:
日均收入(元) |
根據(jù)表3估計(jì)小李的洗車店該月份平均每天的收入.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知向量 , ,若A,B,C是銳角△ABC的三個(gè)內(nèi)角,,則 與 的夾角為( )
A.銳角
B.直角
C.鈍角
D.以上都不對(duì)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在對(duì)某漁業(yè)產(chǎn)品的質(zhì)量調(diào)研中,從甲、乙兩地出產(chǎn)的該產(chǎn)品中各隨機(jī)抽取10件,測(cè)量該產(chǎn)品中某種元素的含量(單位:毫克).如圖是測(cè)量數(shù)據(jù)的莖葉圖:
規(guī)定:當(dāng)產(chǎn)品中的此種元素含量≥15毫克時(shí)為優(yōu)質(zhì)品.
(Ⅰ)試用上述樣本數(shù)據(jù)估計(jì)甲、乙兩地該產(chǎn)品的優(yōu)質(zhì)品率(優(yōu)質(zhì)品件數(shù)/總件數(shù));
(Ⅱ)從乙地抽出的上述10件產(chǎn)品中,隨機(jī)抽取3件,求抽到的3件產(chǎn)品中優(yōu)質(zhì)品數(shù)ξ的分布列及數(shù)學(xué)期望E(ξ).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】質(zhì)檢部門從企業(yè)生產(chǎn)的產(chǎn)品中抽取100件,測(cè)量這些產(chǎn)品的質(zhì)量指標(biāo)值,由測(cè)量結(jié)果得到如圖的頻率分布直方圖,質(zhì)量指標(biāo)值落在區(qū)間,,內(nèi)的頻率之比為.
(Ⅰ)求這些產(chǎn)品質(zhì)量指標(biāo)值落在區(qū)間內(nèi)的頻率;
(Ⅱ)若將頻率視為概率,從該企業(yè)生產(chǎn)的這種產(chǎn)品中隨機(jī)抽取3件,記這3件產(chǎn)品中質(zhì)量指標(biāo)值位于區(qū)間內(nèi)的產(chǎn)品件數(shù)為,求的分布列與數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,在△ABC中,D、F分別是BC、AC的中點(diǎn), = , = , = .
(1)用 、 表示向量 、 、 、 、 ;
(2)求證:B、E、F三點(diǎn)共線.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)= ,若關(guān)于x的方程f(f(x))=0有且只有一個(gè)實(shí)數(shù)解,則實(shí)數(shù)a的取值范圍是( )
A.(﹣∞,0)
B.(﹣∞,0]∪(0,1)
C.(﹣∞,0)∪(0,1]
D.(﹣∞,0)∪(0,1)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】給出下列不等式:①x≥ln(x+1)(x>﹣1)② >﹣ +2x﹣ (x>0)③ln >2(x+ )(x∈(0,1))其中成立的個(gè)數(shù)是( )
A.0
B.1
C.2
D.3
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)= 的圖象過點(diǎn)(0,﹣1).
(1)求實(shí)數(shù)a的值;
(2)若f(x)=m+ (m,n是常數(shù)),求實(shí)數(shù)m,n的值;
(3)用定義法證明:函數(shù)f(x)在(3,+∞)上是單調(diào)減函數(shù).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com