【題目】如圖所示,在△ABC中,D、F分別是BC、AC的中點, = = , =
(1)用 、 表示向量 、 、 、
(2)求證:B、E、F三點共線.

【答案】
(1)解:如圖所示:解延長AD到G,使 = ,

連接BG、CG,得到四邊形ABGC,

∵D是BC和AG的中點,

∴四邊形ABGC是平行四邊形,則 = + =

= = ), = = ).

∵F是AC的中點,∴ = =

= = )﹣ = ).

= = =


(2)證明:由(1)可知, = ), = ).

= ,即 、 是共線向量,所以B、E、F三點共線


【解析】(1)由題意作出輔助線構(gòu)成平行四邊形ABGC,由四邊形法則和D是AG的中點求出 ,由題意求出 ,由F是AC的中點求出 ,再由向量減法的三角形法則求出 ;(2)由(1)求出 = ,故兩個向量共線,即B、E、F三點共線.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓過點,其離心率為.

(1)求橢圓的方程;

(2)直線相交于兩點,在軸上是否存在點,使為正三角形,若存在,求直線的方程;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】若f(x)=x3+ax2+bx+c有兩個極值點x1 , x2且f(x1)=x1 , 則關(guān)于x的方程3[(f(x)]2+2af(x)+b=0的不同實根個數(shù)為(
A.2
B.3
C.4
D.不確定

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)是定義在R上的奇函數(shù),f(x+2)=f(x),當(dāng)x∈(0,1]時,f(x)=1﹣2|x﹣ |,則函數(shù)g(x)=f[f(x)]﹣ x在區(qū)間[﹣2,2]內(nèi)不同的零點個數(shù)是(
A.5
B.6
C.7
D.9

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知四棱錐中,底面為菱形,且,是邊長為的正三角形,且平面平面,已知點的中點.

(Ⅰ)證明:平面;

(Ⅱ)求三棱錐的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)對任意的a,b∈R,都有f(a+b)=f(a)+f(b)﹣1,且當(dāng)x>0時,f(x)>1
(1)判斷并證明f(x)的單調(diào)性;
(2)若f(4)=3,解不等式f(3m2﹣m﹣2)<2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】函數(shù)g(x)=ax3+2(1﹣a)x2﹣3ax在區(qū)間(﹣∞, )內(nèi)單調(diào)遞減,則a的取值范圍是

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下表是某廠的產(chǎn)量x與成本y的一組數(shù)據(jù):

產(chǎn)量x(千件)

2

3

5

6

成本y(萬元)

7

8

9

12

(Ⅰ)根據(jù)表中數(shù)據(jù),求出回歸直線的方程 = x (其中 = , =
(Ⅱ)預(yù)計產(chǎn)量為8千件時的成本.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=ex , g(x)=ln 的圖象分別與直線y=m交于A,B兩點,則|AB|的最小值為(
A.2
B.2+ln2
C.e2
D.2e﹣ln

查看答案和解析>>

同步練習(xí)冊答案