關(guān)于x的方程(
1
3
)|x|-a-1=0
有解,則a的取值范圍是(  )
A、0<a≤1B、-1<a≤0
C、a≥1D、a>0
考點:根的存在性及根的個數(shù)判斷
專題:函數(shù)思想,函數(shù)的性質(zhì)及應(yīng)用
分析:轉(zhuǎn)化為函數(shù)y=(
1
3
)|x|
,根據(jù)函數(shù)的單調(diào)性可知:0<(
1
3
)|x|
≤1,即0<a+1≤1,求解即可.
解答: 解:∵關(guān)于x的方程(
1
3
)|x|-a-1=0
有解,
∴函數(shù)y=(
1
3
)|x|

根據(jù)指數(shù)函數(shù)的單調(diào)性可知:0<(
1
3
)|x|
≤1,
∴方程有解只需:即-1<a≤0,
故選:B
點評:本題考察了函數(shù)的性質(zhì),方程的根,屬于容易題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)f(x)=asin2x+bcos2x,其中a,b∈R,ab≠0,若f(x)≤|f(
π
6
)|對一切x∈R 恒成立,則下列結(jié)論正確的是( 。
①f(
11π
12
)=0;
②既不是奇函數(shù)也不是偶函數(shù);
③f(x)的單調(diào)遞增區(qū)間是[kπ+
π
6
,kπ+
3
](k∈Z);
④存在經(jīng)過點(a,b)的直線與函數(shù)f(x)的圖象不相交.
A、①②B、①③C、②③D、②④

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已 知雙曲 線經(jīng)過 點M(
6
,
6
),且
a2
c
=1.
(1)如果F(3,0)為此雙曲線的右焦點,求雙曲線方程;
(2)如果離心率e=2,求雙曲線方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某連鎖經(jīng)營公司所屬5個零售店某月的銷售額和利潤額資料如下表
商店名稱ABCDE
E
銷售額x(萬元)35679
9
利潤額y(萬元)23345
(1)畫出銷售額和利潤額的散點圖;

(2)若已知利潤額y對銷售額x的回歸直線方程為
y
=0.5x+a,求a;
(3)估計要達(dá)到10萬元的利潤額,銷售額大約多少萬元?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=2(
3
cosx-sinx)sinx,x∈R.
(Ⅰ)求函數(shù)f(x)的最小正周期與單調(diào)增區(qū)間;
(Ⅱ)求函數(shù)f(x)在[0,
π
4
]上的最大值與最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知實數(shù)x、y滿足不等式組
x-2y+1≥0
2x-y-1≤0
4x+2y+1≤0
x2+y2≤1
,則3x+y的取值范圍為(  )
A、[-3,-
3
8
]
B、[-3,-
9
10
]
C、[-
10
,-
9
10
]
D、[-
10
,-
3
8
]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=|x-2a|+|x-a|,a∈R,a≠0.
(Ⅰ)當(dāng)a=1時,解不等式:f(x)>2;
(Ⅱ)若b∈R且B≠0,證明:f(b)≥f(a),并說明等號成立時滿足的條件.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

把一數(shù)列依次按第一個括號內(nèi)一個數(shù),第二個括號內(nèi)兩個數(shù),第三個括號內(nèi)三個數(shù),第四個括號內(nèi)一個數(shù),…循環(huán)分為(1),(3,5),(7,9,11),(13),(15,17),(19,21,23),(25),…,則第100個括號內(nèi)的數(shù)為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)y=3sin(-2x+
π
6
)的單調(diào)遞增區(qū)間為(  )(其中k∈Z)
A、[-kπ-
π
6
,-kπ+
π
3
]
B、[2kπ-
3
,2kπ-
π
3
]
C、[kπ-
3
,kπ-
π
6
]
D、[kπ-
π
6
,kπ+
π
3
]

查看答案和解析>>

同步練習(xí)冊答案