A. | a≤-2或a=1 | B. | a≤-2或1≤a≤2 | C. | a≥1 | D. | -2≤a≤1 |
分析 p:“?x∈[1,2],x2-a≥0”,可得a≤(x2)min.q:“?x∈R”,使得x2+2ax+2-a=0,則△≥0,解得a,即可得出命題“p∧q”為真命題的充要條件.
解答 解:p:“?x∈[1,2],x2-a≥0”,∴a≤(x2)min,∴a≤1.
q:“?x∈R”,使得x2+2ax+2-a=0,則△=4a2-4(2-a)≥0,解得a≥1,或a≤-2.
那么命題“p∧q”為真命題的充要條件是$\left\{\begin{array}{l}{a≤1}\\{a≥1或a≤-2}\end{array}\right.$,解得a=1或a≤-2.
故選:A.
點評 本題考查了不等式的解法、充要條件的判定、函數(shù)的性質(zhì)、一元二次方程的實數(shù)根與判別式的關(guān)系,考查了推理能力與計算能力,屬于中檔題.
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | [-1,+∞) | B. | (-∞,1) | C. | (-∞,-1] | D. | (1,+∞) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
A | B | C | D | E | F | G |
30 | 5 | 10 | 10 | 5 | 20 | 30 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | x2-$\frac{y^2}{4}$=1 | B. | $\frac{x^2}{4}-{y^2}$=1 | C. | $\frac{y^2}{4}-{x^2}$=1 | D. | y2-$\frac{x^2}{4}$=1 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | -1-i | B. | 1-i | C. | -1+i | D. | 1+i |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | ∅ | B. | {x|x≤0} | C. | {x|0<x≤1} | D. | {x|0≤x<1} |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{1}{3}$ | B. | $\frac{3}{10}$ | C. | $\frac{2}{5}$ | D. | $\frac{11}{30}$ |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com