精英家教網 > 高中數學 > 題目詳情
3.函數y=-x2-4mx+1在[2,+∞)上是減函數,則m的取值范圍是( 。
A.[-1,+∞)B.(-∞,1)C.(-∞,-1]D.(1,+∞)

分析 求出二次函數的對稱軸,利用函數的單調性列出不等式求解即可.

解答 解:函數y=-x2-4mx+1開口向下,對稱軸為:x=-2m,在[2,+∞)上是減函數,
可得:-2m≤2,解得m≥-1.
故選:A.

點評 本題考查二次函數的簡單性質的應用,考查計算能力.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:填空題

13.計算10lg3+log525=5.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

14.如圖,在長方體ABCD-A1B1C1B1中,AA1=2AB=2AD=4,點E在CC1上且C1E=3EC.利用空間向量解決下列問題:
(1)證明:A1C⊥平面BED;
(2)求銳二面角A1-DE-B 的余弦值.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

11.設等差數列{an}的前項和為Sn,且a2=2,S5=15,數列{bn}的前項和為Tn,且b1=$\frac{1}{2}$,2nbn+1=(n+1)bn(n∈N*
(Ⅰ)求數列{an}通項公式an及前項和Sn;
(Ⅱ) 求數列{bn}通項公式bn及前項和Tn

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

18.將一個直角三角形繞斜邊所在的直線旋轉一周,所得的幾何體包括( 。
A.一個圓臺B.一個圓錐C.一個圓柱D.兩個圓錐

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

8.已知a∈R,則“a>2”是“a≥1”的( 。
A.充分不必要條件B.必要不充分條件
C.充要條件D.既不充分也不必要條件

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

15.已知α是第三象限角,sinα=$-\frac{3}{5}$,求$\frac{tan(2π-α)cos(\frac{3π}{2}-α)cos(6π-α)}{sin(α+\frac{3π}{2})cos(α+\frac{3π}{2})}$的值.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

12.已知△ABC的三個頂點是A(3,0),B(4,5),C(0,7)
(1)求BC邊上的高所在的直線方程(請用直線的一般方程表示解題結果)
(2)求BC邊上的中線所在的直線方程(請用直線的一般方程表示解題結果)

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

13.已知p:“?x∈[1,2],x2-a≥0”,q:“?x∈R”,使得x2+2ax+2-a=0,那么命題“p∧q”為真命題的充要條件是(  )
A.a≤-2或a=1B.a≤-2或1≤a≤2C.a≥1D.-2≤a≤1

查看答案和解析>>

同步練習冊答案