分析 (Ⅰ)求出原函數(shù)的導(dǎo)函數(shù),得到f′(2),由f′(2)=-3,且f(2)=2聯(lián)立方程組求得a,b的值,則函數(shù)解析式可求;
(Ⅱ)分別由導(dǎo)函數(shù)大于0和小于0求得原函數(shù)的增區(qū)間及減區(qū)間.
解答 解:(Ⅰ)由f(x)=x3+ax2+bx,得f′(x)=3x2+2ax+b,
∴f′(2)=12+4a+b=-3,①
f(2)=8+4a+2b=2,②
聯(lián)立①②解得:a=-6,b=9.
∴f(x)=x3-6x2+9x;
(Ⅱ)由(Ⅰ)得:f′(x)=3x2-12x+9=3(x2-4x+3),
由f′(x)>0,解得x<1或x>3,
由f′(x)<0,解得1<x<3.
∴函數(shù)f(x)的增區(qū)間為(-∞,1),(3,+∞);減區(qū)間為(1,3).
點(diǎn)評 本題考查利用導(dǎo)數(shù)研究過曲線上某點(diǎn)處的切線方程,考查了利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性,是中檔題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{1}{4}$ | B. | $\frac{1}{3}$ | C. | $\frac{3}{8}$ | D. | $\frac{2}{3}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{3}{61}$ | B. | $\frac{2}{61}$ | C. | $\frac{1}{63}$ | D. | $\frac{1}{64}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | ?n∈N*,都有an<an-1 | B. | a9•a10>0 | ||
C. | S2>S17 | D. | S19≥0 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
時(shí)間 | 第一天 | 第二天 | 第三天 | 第四天 | 第五天 |
步數(shù) | 13980 | 15456 | 17890 | 19012 | 21009 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | ${C}_{10}^{1}$•${C}_{5}^{1}$種 | B. | ${A}_{10}^{1}$•${A}_{5}^{1}$種 | C. | ${C}_{15}^{2}$種 | D. | ${A}_{15}^{2}$種 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com