【題目】已知函數(shù).
(1)求函數(shù)的單調(diào)區(qū)間;
(2)當(dāng)時(shí),函數(shù)在上的最小值為,若不等式有解,求實(shí)數(shù)的取值范圍.
【答案】(1)答案見(jiàn)解析;(2)
【解析】
(1)求出導(dǎo)函數(shù),然后根據(jù)的符號(hào)進(jìn)行分類(lèi)討論,并借助解不等式組的方法得到單調(diào)區(qū)間;(2)根據(jù)(1)中的結(jié)論求出當(dāng)時(shí),函數(shù)在上的最小值,因此問(wèn)題轉(zhuǎn)化為有解,即有解,構(gòu)造函數(shù),求出函數(shù)的最小值即可得到所求.
(1)由,
得,
①當(dāng)時(shí),
令,得,
所以,或,即或,
解得或.
令,得,
所以或,即或,
解得或.
所以函數(shù)的單調(diào)遞增區(qū)間為,;單調(diào)遞減區(qū)間為.
②當(dāng)時(shí),
令,得,由①可知;
令,得,由①可知或.
所以函數(shù)的單調(diào)遞增區(qū)間為;單調(diào)遞減區(qū)間為,.
綜上可得,
當(dāng)時(shí),的單調(diào)遞增區(qū)間為,;單調(diào)遞減區(qū)間為.
當(dāng)時(shí),的單調(diào)遞增區(qū)間為;單調(diào)遞減區(qū)間為,.
(2)由(1)可知若,則當(dāng)時(shí),函數(shù)在上單調(diào)遞減,在上單調(diào)遞增,
所以,
所以不等式有解等價(jià)于有解,
即有解,
設(shè),則,
所以當(dāng)時(shí),,單調(diào)遞減,
當(dāng)時(shí),,單調(diào)遞增,
所以的極小值也是最小值,且最小值為,
從而,
所以實(shí)數(shù)的取值范圍為.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在中,角、、所對(duì)的邊分別為、、,,當(dāng)角取最大值時(shí),的周長(zhǎng)為,則__________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】記表示,中的最大值,如.已知函數(shù),.
(1)設(shè),求函數(shù)在上零點(diǎn)的個(gè)數(shù);
(2)試探討是否存在實(shí)數(shù),使得對(duì)恒成立?若存在,求的取值范圍;若不存在,說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】經(jīng)觀測(cè),某公路段在某時(shí)段內(nèi)的車(chē)流量(千輛/小時(shí))與汽車(chē)的平均速度(千米/小時(shí))之間有函數(shù)關(guān)系:.
(1)在該時(shí)段內(nèi),當(dāng)汽車(chē)的平均速度為多少時(shí)車(chē)流量最大?最大車(chē)流量為多少?(精確到0.01)
(2)為保證在該時(shí)段內(nèi)車(chē)流量至少為10千輛/小時(shí),則汽車(chē)的平均速度應(yīng)控制在什么范圍內(nèi)?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】選修4-4:坐標(biāo)系與參數(shù)方程
在直角坐標(biāo)系中,已知曲線(xiàn)的參數(shù)方程為(為參數(shù))。曲線(xiàn)的參數(shù)方程為(為參數(shù)),在以坐標(biāo)原點(diǎn)為極點(diǎn),軸正半軸為極軸建立極坐標(biāo)系.
(1)求曲線(xiàn),的極坐標(biāo)方程;
(2)在極坐標(biāo)系中,射線(xiàn)與曲線(xiàn)交于點(diǎn),射線(xiàn)與曲線(xiàn)交于點(diǎn),求的面積(其中為坐標(biāo)原點(diǎn)).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】定義在區(qū)間上的函數(shù)的圖象如圖所示,記為,,為頂點(diǎn)的三角形的面積為,則函數(shù)的導(dǎo)數(shù)的圖象大致是( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在三棱錐中, 和是邊長(zhǎng)為的等邊三角形, , 分別是的中點(diǎn).
(1)求證: 平面;
(2)求證: 平面;
(3)求三棱錐的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在直角坐標(biāo)系中,直線(xiàn)的參數(shù)方程為(為參數(shù)),曲線(xiàn)的參數(shù)方程為(為參數(shù)),以該直角坐標(biāo)系的原點(diǎn)為極點(diǎn),軸的非負(fù)半軸為極軸建立極坐標(biāo)系,曲線(xiàn)的極坐標(biāo)方程為.
(Ⅰ)分別求曲線(xiàn)的極坐標(biāo)方程和曲線(xiàn)的直角坐標(biāo)方程;
(Ⅱ)設(shè)直線(xiàn)交曲線(xiàn)于,兩點(diǎn),交曲線(xiàn)于,兩點(diǎn),求的長(zhǎng).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】下列命題中,真命題的序號(hào)是__________.
①“若,則”的否命題;
②“,函數(shù)在定義域內(nèi)單調(diào)遞增”的否定;
③“”是“”的必要條件;
④函數(shù)與函數(shù)的圖象關(guān)于直線(xiàn)對(duì)稱(chēng).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com