某學(xué)生5天的生活費(單位:元)分別為:x,y,8,9,6.已知這組數(shù)據(jù)的平均數(shù)為8,方差為2,則|x-y|=
 
考點:極差、方差與標(biāo)準(zhǔn)差
專題:概率與統(tǒng)計
分析:由已知得
1
5
(x+y+8+9+6)=8
1
5
[(x-8)2+(y-8)2+0+1+4]=2
,由此能求出|x-y|=3.
解答: 解:∵某學(xué)生5天的生活費(單位:元)分別為:x,y,8,9,6,
這組數(shù)據(jù)的平均數(shù)為8,方差為2,
1
5
(x+y+8+9+6)=8
1
5
[(x-8)2+(y-8)2+0+1+4]=2
,
解得x=10,y=7或x=7,y=10,
∴|x-y|=3.
故答案為:3.
點評:本題考查兩個數(shù)的差的絕對值的求法,是基礎(chǔ)題,解題時要注意平均數(shù)和方差的性質(zhì)的合理運用.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

在下列區(qū)間中,函數(shù)f(x)=ex+4x-3的零點所在的區(qū)間為( 。
A、(
1
4
,
1
2
B、(-
1
4
,0)
C、(0,
1
4
D、(
1
2
,
3
4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)x、y≥0,且x2+y3≥x3+y4 ,求證:x3+y3≤2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)實數(shù)x,y滿足不等式組
x+3y-3≥0
2x-y-3≤0
x-my+1≥0
,若目標(biāo)函數(shù)z=2x+y的最大值為9,則實數(shù)m=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在極坐標(biāo)系中,極點為A,已知“葫蘆”型封閉曲線Ω由圓弧ACB和圓弧BDA組成.已知B(4,
π
2
),C(2
2
,
π
4
),D(4
2
,
4

(1)求圓弧ACB和圓弧BDA的極坐標(biāo)方程;
(2)求曲線Ω圍成的區(qū)域面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖是學(xué)校從走讀生中隨機(jī)調(diào)查200名走讀生早上上學(xué)所需時間(單位:分鐘)樣本的頻率分布直方圖.
(1)學(xué)校所有走讀生早上上學(xué)所需要的平均時間約是多少分鐘?
(2)根據(jù)調(diào)查,距離學(xué)校500米以內(nèi)的走讀生上學(xué)時間不超過10分鐘,距離學(xué)校1000米以內(nèi)的走讀生上學(xué)時間不超過20分鐘.那么,距離學(xué)校500米以內(nèi)的走讀生和距離學(xué)校1000米以上的走讀生所占全校走讀生的百分率各是多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)f(x)=x2-
n
2
x+
1
2
,x∈[0,1],n∈Z的值域中恰好有一個整數(shù),則n的值為( 。
A、0或1
B、0或2
C、0或1或3或4
D、0或1或2或3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)試驗E為“同時拋兩枚骰子”、事件A表示“出現(xiàn)的點數(shù)之和為 7”,事件B表示“出現(xiàn)的點數(shù)為9”.現(xiàn)獨立重復(fù)做試驗E,問事件A在事件B之前出現(xiàn)的概率是多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若關(guān)于x的不等式|x+1|<6-|x-m|的解集為∅,則實數(shù)m的取值范圍是
 

查看答案和解析>>

同步練習(xí)冊答案