分析 根據(jù)幾何體的性質(zhì),轉(zhuǎn)化為平面問題,利用勾股定理求解得出球的半徑.
解答 解:∵AB=a,側(cè)棱長為$\frac{{\sqrt{3}}}{2}a$,
∴O′A=$\frac{\sqrt{2}a}{2}$,O′A=O′B,
∴($\frac{\sqrt{3}a}{2}$)2=($\frac{\sqrt{2}a}{2}$)2+O′P2,O′P=$\frac{1}{2}a$,
∵設(shè)球的球心O,半徑R,
∴R2=($\frac{\sqrt{2}a}{2}$)2+(R-$\frac{a}{2}$)2,
R=$\frac{\sqrt{3}a}{2}$,
∴球O的體積為:$\frac{4π×(\frac{\sqrt{3}a}{2})^{3}}{3}$=$\frac{\sqrt{3}{a}^{3}}{2}$
故答案為:$\frac{\sqrt{3}{a}^{3}}{2}$
點評 本題考查球O的體積,考查學生的計算能力,確定球的半徑是關(guān)鍵,比較基礎(chǔ)
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 30° | B. | 45° | C. | 60° | D. | 90° |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
a1 | a2 | a3 | a4 | a5 | a6 | a7 | a8 | a9 | a10 | a11 | a12 |
x1 | y1 | x2 | y2 | x3 | y3 | x4 | y4 | x5 | y5 | x6 | y6 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com