已知函數(shù)的圖像在點處的切線方程為.
(I)求實數(shù),的值;
(Ⅱ)當時,恒成立,求實數(shù)的取值范圍.

(I),;(Ⅱ)實數(shù)的取值范圍為

解析試題分析:(I)由已知條件,先求函數(shù)的導數(shù),利用導數(shù)的幾何意義,列出方程組:,進而可求得實數(shù),的值;(Ⅱ)當時,恒成立由(I)知,當時,恒成立恒成立,.構造函數(shù),,先求出函數(shù)的導數(shù):,再設,求函數(shù)導數(shù),可知,從而在區(qū)間上單調遞減,,由此得,故在區(qū)間上單調遞減,可求得在區(qū)間上的最小值,最后由求得實數(shù)的取值范圍.
試題解析:(I).由于直線的斜率為且過點.                                    2分
,解得,.                   6分
(Ⅱ)由(I)知,當時,恒成立等價于恒成立.                                          8分
,則,記,則在區(qū)間上單調遞減,,故,在區(qū)間上單調遞減,,                                   11分
所以,實數(shù)的取值范圍為.                       13分
考點:1.導數(shù)的幾何意義;2.導數(shù)與函數(shù)的單調性、最值;3.含參數(shù)不等式中的參數(shù)取值范圍問題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

已知函數(shù)f(x)=2ax--(2+a)lnx(a≥0)
(Ⅰ)當時,求的極值;
(Ⅱ)當a>0時,討論的單調性;
(Ⅲ)若對任意的a∈(2,3),x­1,x2∈[1,3],恒有成立,求實數(shù)m的取值范圍。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知函數(shù).
(Ⅰ)求函數(shù)的單調區(qū)間;
(Ⅱ)若函數(shù)上是減函數(shù),求實數(shù)a的最小值;
(Ⅲ)若,使)成立,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知函數(shù).
(Ⅰ)若函數(shù)的值域為,若關于的不等式的解集為,求的值;
(Ⅱ)當時,為常數(shù),且,,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知函數(shù),),
(Ⅰ)證明:當時,對于任意不相等的兩個正實數(shù),均有成立;
(Ⅱ)記,
(ⅰ)若上單調遞增,求實數(shù)的取值范圍;
(ⅱ)證明:.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知函數(shù)的圖象在與軸交點處的切線方程是.
(I)求函數(shù)的解析式;
(II)設函數(shù),若的極值存在,求實數(shù)的取值范圍以及函數(shù)取得極值時對應的自變量的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知函數(shù)
(1)當時,求的單調區(qū)間;
(2)若,設是函數(shù)的兩個極值點,且,記分別為的極大值和極小值,令,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

計算下列定積分.
(1)                       (2)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知函數(shù)試討論的單調性.

查看答案和解析>>

同步練習冊答案