已知函數(shù)的圖像在點處的切線方程為.
(I)求實數(shù),的值;
(Ⅱ)當時,恒成立,求實數(shù)的取值范圍.
(I),;(Ⅱ)實數(shù)的取值范圍為.
解析試題分析:(I)由已知條件,先求函數(shù)的導數(shù),利用導數(shù)的幾何意義,列出方程組:,進而可求得實數(shù),的值;(Ⅱ)當時,恒成立由(I)知,當時,恒成立恒成立,.構造函數(shù),,先求出函數(shù)的導數(shù):,再設,求函數(shù)導數(shù),可知,從而在區(qū)間上單調(diào)遞減,,由此得,故在區(qū)間上單調(diào)遞減,可求得在區(qū)間上的最小值,最后由求得實數(shù)的取值范圍.
試題解析:(I).由于直線的斜率為且過點. 2分
,解得,. 6分
(Ⅱ)由(I)知,當時,恒成立等價于恒成立. 8分
記,,則,記,則,在區(qū)間上單調(diào)遞減,,故,在區(qū)間上單調(diào)遞減,, 11分
所以,實數(shù)的取值范圍為. 13分
考點:1.導數(shù)的幾何意義;2.導數(shù)與函數(shù)的單調(diào)性、最值;3.含參數(shù)不等式中的參數(shù)取值范圍問題.
科目:高中數(shù)學 來源: 題型:解答題
已知函數(shù)f(x)=2ax--(2+a)lnx(a≥0)
(Ⅰ)當時,求的極值;
(Ⅱ)當a>0時,討論的單調(diào)性;
(Ⅲ)若對任意的a∈(2,3),x1,x2∈[1,3],恒有成立,求實數(shù)m的取值范圍。
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
已知函數(shù).
(Ⅰ)求函數(shù)的單調(diào)區(qū)間;
(Ⅱ)若函數(shù)上是減函數(shù),求實數(shù)a的最小值;
(Ⅲ)若,使()成立,求實數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
已知函數(shù).
(Ⅰ)若函數(shù)的值域為,若關于的不等式的解集為,求的值;
(Ⅱ)當時,為常數(shù),且,,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
已知函數(shù)(,),.
(Ⅰ)證明:當時,對于任意不相等的兩個正實數(shù)、,均有成立;
(Ⅱ)記,
(ⅰ)若在上單調(diào)遞增,求實數(shù)的取值范圍;
(ⅱ)證明:.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
已知函數(shù)的圖象在與軸交點處的切線方程是.
(I)求函數(shù)的解析式;
(II)設函數(shù),若的極值存在,求實數(shù)的取值范圍以及函數(shù)取得極值時對應的自變量的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
已知函數(shù)
(1)當時,求的單調(diào)區(qū)間;
(2)若,設是函數(shù)的兩個極值點,且,記分別為的極大值和極小值,令,求實數(shù)的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com