已知曲線
的方程是
.
(1)若曲線
是橢圓,求
的取值范圍;
(2)若曲線
是雙曲線,且有一條漸近線的傾斜角是
,求此雙曲線的方程.
(1)當
或
或
時,
表示直線;
當
且
且
時,方程為
, 、
方程①表示橢圓的充要條件是
即
或
.
(2)方程①表示雙曲線的充要條件是
,
即
或
或
.
a. 當
或
時,雙曲線焦點在
軸上,
,
其中一條漸近線的斜率為
,得
.
b.當
時,雙曲線焦點在
軸上,
,
.
其中一條漸近線的斜率為
,
得
(舍去).
綜上得雙曲線方程為
.
練習冊系列答案
相關習題
科目:高中數(shù)學
來源:不詳
題型:解答題
(本題滿分13分)已知平面
上的動點
及兩定點A(-2,0),B(2,0),直線PA,PB的斜率分別是
,
,且
·
。(1)求動點P的軌跡C的方程;
(2)已知直線
與曲線C交于M,N兩點,且直線BM,BN的斜率都存在并滿足
·
,求證:直線
過原點。
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
已知橢圓
,
得
且
的公共弦
過橢圓
的右焦點。
⑴當
軸時,求
的值,并判斷拋物線
的焦點是否在直線
上;
⑵若
,且拋物線
的焦點在直線
上,求
的值及直線AB的方程。
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
已知點C為圓
的圓心,點A(1,0),P是圓上的動點,點Q在圓的半徑CP上,且
(Ⅰ)當點P在圓上運動時,求點Q的軌跡方程;
(Ⅱ)若直線
與(Ⅰ)中所求點Q的軌跡交于不同兩點F,H,O是坐標原點,且
,求△FOH的面積的取值范圍。
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
已知雙曲線
的左、右焦點分別是
F1、
F2.(1)求雙曲線上滿足
的點P的坐標;
(2)橢圓
C2的左、右頂點分別是雙曲線
C1的左、右焦點,橢圓
C2的左、右焦點分別是雙曲線
C1的左、右頂點,若直線
與橢圓恒有兩個不同的交點
A和
B,且
(其中
O為坐標原點),求
k的取值范圍.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
已知兩條直線l1:2x-3y+2=0和l2:3x-2y+3=0,有一動圓(圓心和半徑都動)與l1、l2都相交,且l1、l2被圓截得的弦長分別是定值26和24,求圓心的軌跡方程.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:單選題
若命題“曲線
上的點的坐標
是方程
的解”是正確的,則下列命題一定正確的是( )
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:單選題
若拋物線
y2=2
Px(
P>0)上三點的橫坐標成等差數(shù)列,那么這三點與焦點
F的距離的關系是( )
A.成等差數(shù)列 | B.成等比數(shù)列 |
C.既成等差數(shù)列,又成等比數(shù)列 | D.既不成等差數(shù)列,也不成等比數(shù)列 |
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
已知梯形
中,
,點
分有向線段
所成的比為
,雙曲線過
,
,
三點,且以
,
為焦點,當
時,求雙曲線離心率
的取值范圍.
查看答案和解析>>