【題目】已知數(shù)列, 滿足, ,且, .
(1)求及;
(2)猜想, 的通項(xiàng)公式,并證明你的結(jié)論;
(3)證明:對(duì)所有的, .
【答案】(1), , , , , ;(2)見(jiàn)解析;(3)見(jiàn)解析.
【解析】試題分析:(1)依次把n=1,2,3代入遞推式即可求出{an},{bn}的前4項(xiàng);
(2)利用數(shù)學(xué)歸納法證明猜想;
(3)利用放縮法證明不等式左邊,利用函數(shù)單調(diào)性證明不等式右邊.
試題解析:
(1)因?yàn)?/span>, ,且,
令,得到解得, ;同理令分別解得由此可得, ,
, ;
(2)證明:猜測(cè), ,
用數(shù)學(xué)歸納法證明:①當(dāng)時(shí),由上可得結(jié)論成立.
②假設(shè)當(dāng)時(shí),結(jié)論成立,即, ,
那么當(dāng)時(shí), ,
,所以當(dāng)時(shí),結(jié)論也成立.
由①②,可知, 對(duì)一切正整數(shù)都成立.
(3)由(2)知, ,
于是所證明的不等式即為
(ⅰ)先證明:
因?yàn)?/span>,所以,從而,
即,所以
(ⅱ)再證明
設(shè)函數(shù), ,則, .
因?yàn)樵趨^(qū)間上為增函數(shù),
所以當(dāng)時(shí), ,
從而在區(qū)間上為單調(diào)遞減函數(shù),
因此對(duì)于一切都成立,因?yàn)楫?dāng)時(shí), ,
所以
綜上所述,對(duì)所有的,均有成立.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】選修4-4:坐標(biāo)系與參數(shù)方程
已知圓的參數(shù)方程為(為參數(shù)),若是圓與軸正半軸的交點(diǎn),以坐標(biāo)原點(diǎn)為極點(diǎn),以軸正半軸為極軸,建立極坐標(biāo)系,設(shè)過(guò)點(diǎn)的圓的切線為.
(1)求直線的極坐標(biāo)方程;
(2)求圓上到直線的距離最大的點(diǎn)的直角坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】計(jì)劃在某水庫(kù)建一座至多安裝臺(tái)發(fā)電機(jī)的水電站,過(guò)去年的水文資料顯示,水庫(kù)年入流量(年入流量:一年內(nèi)上游來(lái)水與庫(kù)區(qū)降水之和.單位:億立方米)都在40以上,不足的年份有年,不低于且不超過(guò)的年份有年,超過(guò)的年份有年,將年入流量在以上三段的頻率作為相應(yīng)段的概率,假設(shè)各年的年入流量相互獨(dú)立.
(1)求未來(lái)年中,設(shè)表示流量超過(guò)的年數(shù),求的分布列及期望;
(2)水電站希望安裝的發(fā)電機(jī)盡可能運(yùn)行,但每年發(fā)電機(jī)最多可運(yùn)行臺(tái)數(shù)受年入流量限制,并有如下關(guān)系:
年入流量 | |||
發(fā)電機(jī)最多可運(yùn)行臺(tái)數(shù) |
若某臺(tái)發(fā)電機(jī)運(yùn)行,則該臺(tái)年利潤(rùn)為萬(wàn)元,若某臺(tái)發(fā)電機(jī)未運(yùn)行,則該臺(tái)年虧損萬(wàn)元,欲使水電站年總利潤(rùn)的均值達(dá)到最大,應(yīng)安裝發(fā)電機(jī)多少臺(tái)?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知方程x2+y2-2(m+3)x+2(1-4m2)y+16m4+9=0表示一個(gè)圓.
(1)求實(shí)數(shù)m的取值范圍;
(2)求該圓的半徑r的取值范圍;
(3)求圓心C的軌跡方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)函數(shù).
(1)若,求曲線在處的切線方程;
(2)若當(dāng)時(shí), ,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】下面幾種推理過(guò)程是演繹推理的是 ( )
A. 某校高三(1)班有55人,2班有54人,3班有52人,由此得高三所有班人數(shù)超過(guò)50人
B. 兩條直線平行,同旁內(nèi)角互補(bǔ),如果∠A與∠B是兩條平行直線的同旁內(nèi)角,則∠A+∠B=180°
C. 由平面三角形的性質(zhì),推測(cè)空間四邊形的性質(zhì)
D. 在數(shù)列{an}中,a1=1,an= (an-1+)(n≥2),由此歸納出{an}的通項(xiàng)公
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】函數(shù)f(x)= 的定義域?yàn)镽,則實(shí)數(shù)a的取值范圍為( )
A.(0,1)
B.[0,1]
C.(0,1]
D.[1,+∞)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)y=log2 log4 + (2≤x≤2m , m>1,m∈R)
(1)求x=4 時(shí)對(duì)應(yīng)的y值;
(2)求該函數(shù)的最小值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com