已知橢圓的中點(diǎn)在原點(diǎn)且過(guò)點(diǎn),焦點(diǎn)在坐標(biāo)軸上,長(zhǎng)軸長(zhǎng)是短軸長(zhǎng)的3倍,求該橢圓的方程.

解析試題分析:由題設(shè)可知,橢圓的方程是標(biāo)準(zhǔn)方程.
(1)當(dāng)焦點(diǎn)在x軸上時(shí),設(shè)橢圓方程為 (a>b>0),則,
解得:;所以 此時(shí)橢圓的方程是
(2)當(dāng)焦點(diǎn)在y軸上時(shí),設(shè)橢圓方程為 (a>b>0),則,
解得:;所以此時(shí)所求的橢圓方程為。
綜上知:橢圓的標(biāo)準(zhǔn)方程為
考點(diǎn):本題考查橢圓的基本性質(zhì)和橢圓的標(biāo)準(zhǔn)方程。
點(diǎn)評(píng):本題主要考查了運(yùn)算求解能力,分類討論思想、方程思想.屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

(本小題滿分12分)已知橢圓,離心率為的橢圓經(jīng)過(guò)點(diǎn).
(1)求該橢圓的標(biāo)準(zhǔn)方程;
(2)過(guò)橢圓的一個(gè)焦點(diǎn)且互相垂直的直線分別與橢圓交于,是否存在常數(shù),使得?若存在,求出實(shí)數(shù)的值;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知橢圓G:的右焦點(diǎn)F為,G上的點(diǎn)到點(diǎn)F的最大距離為,斜率為1的直線與橢圓G交與、兩點(diǎn),以AB為底邊作等腰三角形,頂點(diǎn)為P(-3,2)
(1)求橢圓G的方程;
(2)求的面積。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

(12分)直線與雙曲線相交于兩點(diǎn),
(1)求的取值范圍
(2)當(dāng)為何值時(shí),以為直徑的圓過(guò)坐標(biāo)原點(diǎn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

點(diǎn)A、B分別是以雙曲線的焦點(diǎn)為頂點(diǎn),頂點(diǎn)為焦點(diǎn)的橢圓C長(zhǎng)軸的左、右端點(diǎn),點(diǎn)F是橢圓的右焦點(diǎn),點(diǎn)P在橢圓C上,且位于x軸上方, 
(1)求橢圓C的的方程;
(2)求點(diǎn)P的坐標(biāo);
(3)設(shè)M是橢圓長(zhǎng)軸AB上的一點(diǎn),點(diǎn)M到直線AP的距離等于|MB|,求橢圓上的點(diǎn)到M的距離d的最小值。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

(本小題滿分14分)
已知拋物線的頂點(diǎn)為坐標(biāo)原點(diǎn),焦點(diǎn)在軸上. 且經(jīng)過(guò)點(diǎn)
(1)求拋物線的方程;
(2)若動(dòng)直線過(guò)點(diǎn),交拋物線兩點(diǎn),是否存在垂直于軸的直線被以為直徑的圓截得的弦長(zhǎng)為定值?若存在,求出的方程;若不存在,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

(Ⅰ)已知雙曲線C與雙曲線有相同的漸近線,且一條準(zhǔn)線為,求雙曲線C的方程;
(Ⅱ)已知圓截軸所得弦長(zhǎng)為6,圓心在直線上,并與軸相切,求該圓的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知焦點(diǎn)在坐標(biāo)軸上的雙曲線,它的兩條漸近線方程為,焦點(diǎn)到漸近線的距離為,求此雙曲線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知圓O:軸于A,B兩點(diǎn),曲線C是以為長(zhǎng)軸,離心率為的橢圓,其左焦點(diǎn)為F.若P是圓O上一點(diǎn)連結(jié)PF,過(guò)原點(diǎn)O作直線PF的垂線交橢圓C的左準(zhǔn)線于點(diǎn)Q

(1)求橢圓C的標(biāo)準(zhǔn)方程;
(2)若點(diǎn)P的坐標(biāo)為(1,1),求證:直線PQ與圓相切;
(3)試探究:當(dāng)點(diǎn)P在圓O上運(yùn)動(dòng)時(shí)(不與A、B重合),直線PQ與圓O是否保持相切的位置關(guān)系?若是,請(qǐng)證明;若不是,請(qǐng)說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案