二次函數(shù)f(x)滿足f(x+1)-f(x)=2x,且f(0)=1.
(1)求f(x)的解析式;
(2)在區(qū)間[-1,1]上,y=f(x)的圖象恒在y=2x+m的圖象上方,求實(shí)數(shù)m的取值范圍
(1)f(x)=x2-x+1,(2)
解析試題分析:(1)求二次函數(shù)解析式,一般方法為待定系數(shù)法.二次函數(shù)解析式有三種設(shè)法,本題設(shè)一般式f(x)=ax2+bx+1,再利用等式恒成立,求出項(xiàng)的系數(shù).由a(x+1)2+b(x+1)-ax2-bx=2x得2ax+a+b=2x,所以.(2)恒成立問題一般轉(zhuǎn)化為最值問題.先構(gòu)造不等式,再變量分離,這樣就轉(zhuǎn)化為求函數(shù)的最小值問題.
試題解析:(1)設(shè)f(x)=ax2+bx+1
a(x+1)2+b(x+1)-ax2-bx=2x
2ax+a+b=2x
f(x)=x2-x+1
(2)
考點(diǎn):二次函數(shù)解析式,二次函數(shù)最值,不等式恒成立
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知的三內(nèi)角分別為,向量
,記函數(shù).
(1)若,求的面積;
(2)若關(guān)于的方程有兩個(gè)不同的實(shí)數(shù)解,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
設(shè)是實(shí)數(shù),函數(shù)().
(1)求證:函數(shù)不是奇函數(shù);
(2)當(dāng)時(shí),求滿足的的取值范圍;
(3)求函數(shù)的值域(用表示).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知,不等式的解集為.
(1)求的值;
(2)若對(duì)一切實(shí)數(shù)恒成立,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)的定義域?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/03/b/1zk4y3.png" style="vertical-align:middle;" />.
(1)求函數(shù)在上的最小值;
(2)對(duì),不等式恒成立,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)
(1)求函數(shù)的單調(diào)區(qū)間.
(2)若方程有4個(gè)不同的實(shí)根,求的范圍?
(3)是否存在正數(shù),使得關(guān)于的方程有兩個(gè)不相等的實(shí)根?如果存在,求b滿足的條件,如果不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)f(x)=x3(a>0且a≠1).
(1)求函數(shù)f(x)的定義域;
(2)討論函數(shù)f(x)的奇偶性;
(3)求a的取值范圍,使f(x)>0在定義域上恒成立.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com