設(shè)數(shù)列{an}的首項(xiàng)a1=
1
2
,且an+1=
2an
1+an
(n∈N*).
(1)求a2,a3,a4;
(2)根據(jù)上述結(jié)果猜想數(shù)列{an}的通項(xiàng)公式,并用數(shù)學(xué)歸納法加以證明.
分析:(1)由題意可得,由a1的值,可求得a2,再由a2的值求 a3,再由a3 的值求出a4的值.
(2)猜想 an=
2n-1
2n-1+1
,檢驗(yàn)n=1時(shí)等式成立,假設(shè)n=k時(shí)命題成立,證明當(dāng)n=k+1時(shí)命題也成立.
解答:解:(1)a2=
2
3
,a3=
4
5
,a4=
8
9
…(2分)
(2)猜想an=
2n-1
2n-1+1
,(n∈N*)…(2分)
證明:①當(dāng)n=1時(shí),左邊=a1,右邊=
21-1
21-1+1
=
1
2
,猜測(cè)成立;
②假設(shè)當(dāng)n=k(k∈N*)時(shí)有ak=
2k-1
2k-1+1
成立
則當(dāng)n=k+1時(shí),左邊=
2ak
1+ak
=
2•
2k-1
2k-1+1
1+
2k-1
2k-1+1
=
2k
2k+1
=右邊.故猜測(cè)也成立.
由①②可得對(duì)一切n∈N*,數(shù)列{an}的通項(xiàng)公式為an=
2n-1
2n-1+1
(n∈N*)…(4分)
點(diǎn)評(píng):本題考查數(shù)列的遞推公式,用數(shù)學(xué)歸納法證明等式成立.證明當(dāng)n=k+1時(shí)命題也成立,是解題的難點(diǎn).
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)數(shù)列{an}的首項(xiàng)a1=
3
2
,前n項(xiàng)和為Sn,且滿足2an+1+Sn=3( n∈N*).
(Ⅰ)求a2及an;
(Ⅱ)求滿足
18
17
S2n
Sn
8
7
的所有n的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)數(shù)列{an}的首項(xiàng)a1=a≠
1
4
,且an+1=
1
2
an
(n為偶數(shù))
an+
1
4
(n為奇數(shù))
,n∈N*,記bn=a2n-1-
1
4
cn=
sinn
|sinn|
bn
,n∈N*
(1)求a2,a3
(2)判斷數(shù)列{bn}是否為等比數(shù)列,并證明你的結(jié)論;
(3)當(dāng)a>
1
4
時(shí),數(shù)列{cn}前n項(xiàng)和為Sn,求Sn最值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2012•昌平區(qū)二模)設(shè)數(shù)列{an}的首項(xiàng)a1=-
1
2
,前n項(xiàng)和為Sn,且對(duì)任意n,m∈N*都有
Sn
Sm
=
n(3n-5)
m(3m-5)
,數(shù)列{an}中的部分項(xiàng){abk}(k∈N*)成等比數(shù)列,且b1=2,b2=4.
(Ⅰ)求數(shù)列{an}與{bn}與的通項(xiàng)公式;
(Ⅱ)令f(n)=
1
bn+1
,并用x代替n得函數(shù)f(x),設(shè)f(x)的定義域?yàn)镽,記cn=f(0)+f(
1
n
)+f(
2
n
)+…+f(
n
n
)(n∈N*)
,求
n
i=1
1
cici+1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)數(shù)列{an}的首項(xiàng)a1=
5
4
,且an+1=
1
2
a
n
,n為偶數(shù)
an+
1
4
,n為奇數(shù)
,記bn=a2n-1-
1
4
,n=1,2,3,…
(Ⅰ)求數(shù)列{bn}的通項(xiàng)公式;
(Ⅱ)若設(shè)數(shù)列{cn}的前n項(xiàng)和為Sn,cn=nbn,求Sn

查看答案和解析>>

同步練習(xí)冊(cè)答案