設(shè)數(shù)列{an}的首項(xiàng)a1=
3
2
,前n項(xiàng)和為Sn,且滿足2an+1+Sn=3( n∈N*).
(Ⅰ)求a2及an;
(Ⅱ)求滿足
18
17
S2n
Sn
8
7
的所有n的值.
分析:(Ⅰ)把n=1代入2an+1+Sn=3,再由a1=
3
2
,能求出a2的值.由2an+1+Sn=3,2an+Sn-1=3(n≥2)相減,得
an+1
an
=
1
2
,由此能夠求出an
(Ⅱ)由題意知
18
17
S2n
Sn
=1+(
1
2
)n
8
7
,由此能夠求出滿足條件的所有的n的值.
解答:解:(Ⅰ)由2an+1+Sn=3,得2a2+a1=3,
a1=
3
2
,所以a2=
3
4

由2an+1+Sn=3,2an+Sn-1=3(n≥2)相減,
an+1
an
=
1
2
,
a2
a1
=
1
2
,所以數(shù)列{an}是以
3
2
為首項(xiàng),
1
2
為公比的等比數(shù)列.
因此an=
3
2
•(
1
2
)n-1=3•(
1
2
)n
(n∈N*).
(Ⅱ)由題意與(Ⅰ),
18
17
S2n
Sn
=1+(
1
2
)n
8
7
,
1
17
<(
1
2
)n
1
7

因?yàn)?span id="quegw2u" class="MathJye" mathtag="math" style="whiteSpace:nowrap;wordSpacing:normal;wordWrap:normal">
1
17
<(
1
2
)3
1
7
1
17
<(
1
2
)4
1
7
,
所以n的值為3,4.
點(diǎn)評(píng):本題主要考查數(shù)列遞推關(guān)系,等比數(shù)列的定義,求和公式等基礎(chǔ)知識(shí),同時(shí)考查運(yùn)算求解能力.雖然是一道基礎(chǔ)題,但考查數(shù)列基礎(chǔ)知識(shí)的面比較廣.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)數(shù)列{an}的首項(xiàng)a1=a≠
1
4
,且an+1=
1
2
an
(n為偶數(shù))
an+
1
4
(n為奇數(shù))
,n∈N*,記bn=a2n-1-
1
4
,cn=
sinn
|sinn|
bn
,n∈N*
(1)求a2,a3;
(2)判斷數(shù)列{bn}是否為等比數(shù)列,并證明你的結(jié)論;
(3)當(dāng)a>
1
4
時(shí),數(shù)列{cn}前n項(xiàng)和為Sn,求Sn最值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)數(shù)列{an}的首項(xiàng)a1=
1
2
,且an+1=
2an
1+an
(n∈N*).
(1)求a2,a3,a4;
(2)根據(jù)上述結(jié)果猜想數(shù)列{an}的通項(xiàng)公式,并用數(shù)學(xué)歸納法加以證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2012•昌平區(qū)二模)設(shè)數(shù)列{an}的首項(xiàng)a1=-
1
2
,前n項(xiàng)和為Sn,且對(duì)任意n,m∈N*都有
Sn
Sm
=
n(3n-5)
m(3m-5)
,數(shù)列{an}中的部分項(xiàng){abk}(k∈N*)成等比數(shù)列,且b1=2,b2=4.
(Ⅰ)求數(shù)列{an}與{bn}與的通項(xiàng)公式;
(Ⅱ)令f(n)=
1
bn+1
,并用x代替n得函數(shù)f(x),設(shè)f(x)的定義域?yàn)镽,記cn=f(0)+f(
1
n
)+f(
2
n
)+…+f(
n
n
)(n∈N*)
,求
n
i=1
1
cici+1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)數(shù)列{an}的首項(xiàng)a1=
5
4
,且an+1=
1
2
a
n
,n為偶數(shù)
an+
1
4
,n為奇數(shù)
,記bn=a2n-1-
1
4
,n=1,2,3,…
(Ⅰ)求數(shù)列{bn}的通項(xiàng)公式;
(Ⅱ)若設(shè)數(shù)列{cn}的前n項(xiàng)和為Sn,cn=nbn,求Sn

查看答案和解析>>

同步練習(xí)冊(cè)答案