分析 (1)取PA的中點(diǎn)F,連接EF,BF,通過證明CE∥BF,利用直線與平面平行的判定定理證明即可.
(2)利用已知條件轉(zhuǎn)化求解M到底面的距離,作出二面角的平面角,然后求解二面角M-AB-D的余弦值即可.
解答 (1)證明:取PA的中點(diǎn)F,連接EF,BF,因?yàn)镋是PD的中點(diǎn),
所以EF$\underset{∥}{=}$$\frac{1}{2}$AD,AB=BC=$\frac{1}{2}$AD,∠BAD=∠ABC=90°,∴BC∥$\frac{1}{2}$AD,
∴BCEF是平行四邊形,可得CE∥BF,BF?平面PAB,CE?平面PAB,
∴直線CE∥平面PAB;
(2)解:四棱錐P-ABCD中,
側(cè)面PAD為等邊三角形且垂直于底面ABCD,AB=BC=$\frac{1}{2}$AD,
∠BAD=∠ABC=90°,E是PD的中點(diǎn).
取AD的中點(diǎn)O,M在底面ABCD上的射影N在OC上,設(shè)AD=2,則AB=BC=1,OP=$\sqrt{3}$,
∴∠PCO=60°,直線BM與底面ABCD所成角為45°,
可得:BN=MN,CN=$\frac{\sqrt{3}}{3}$MN,BC=1,
可得:1+$\frac{1}{3}$BN2=BN2,BN=$\frac{\sqrt{6}}{2}$,MN=$\frac{\sqrt{6}}{2}$,
作NQ⊥AB于Q,連接MQ,
所以∠MQN就是二面角M-AB-D的平面角,MQ=$\sqrt{{1}^{2}+(\frac{\sqrt{6}}{2})^{2}}$
=$\frac{\sqrt{10}}{2}$,
二面角M-AB-D的余弦值為:$\frac{1}{\frac{\sqrt{10}}{2}}$=$\frac{\sqrt{10}}{5}$.
點(diǎn)評 本題考查直線與平面平行的判定定理的應(yīng)用,二面角的平面角的求法,考查空間想象能力以及計(jì)算能力.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com