【題目】已知,實數(shù),函數(shù),函數(shù).

(Ⅰ)令,當(dāng)時,試討論函數(shù)在其定義域內(nèi)的單調(diào)性;

(Ⅱ)當(dāng)時,令,是否存在實數(shù),使得對于函數(shù)定義域中的任意實數(shù),均存在實數(shù),有成立?若存在,求出實數(shù)的取值集合;若不存在,請說明理由.

【答案】(Ⅰ)見詳解;(Ⅱ)

【解析】分析:(Ⅰ)求導(dǎo),討論參數(shù)的大小,進(jìn)而研究函數(shù)的定義域和導(dǎo)數(shù)的符號變化,再確定函數(shù)的單調(diào)性;(Ⅱ)構(gòu)造函數(shù),討論的范圍和的大小關(guān)系,將問題轉(zhuǎn)化為求函數(shù)的最值問題,再利用導(dǎo)數(shù)的符號變化確定函數(shù)的單調(diào)性,進(jìn)而確定函數(shù)的最值.

詳解:(Ⅰ)

1. ,此時函數(shù)的定義域為,故函數(shù)內(nèi)單調(diào)遞增, 內(nèi)單調(diào)遞減.

2. ,,

此時函數(shù)的定義域為,

,此時恒成立. ,

函數(shù)內(nèi)單調(diào)遞增,在內(nèi)單調(diào)遞減.

綜上,當(dāng)時,函數(shù)內(nèi)單調(diào)遞增,在內(nèi)單調(diào)遞減;當(dāng)時,函數(shù)內(nèi)單調(diào)遞增, 內(nèi)單調(diào)遞減.

(Ⅱ)當(dāng)假設(shè)存在實數(shù)滿足條件,

上恒成立.

1. 當(dāng),

可化為,

問題轉(zhuǎn)化為:對任意恒成立(*);

(1) ,因為,

所以函數(shù)時單調(diào)遞減,,

從而函數(shù)時單調(diào)遞增,

所以(*)成立,滿足題意;

(2) 當(dāng),,

因為,所以,則當(dāng),

,所以函數(shù)時單調(diào)遞增,

從而函數(shù)時單調(diào)遞減,所以,此時(*)不成立;

所以當(dāng),恒成立時,

2. 當(dāng),

可化為

問題轉(zhuǎn)化為:對任意的恒成立(**);

(1),,,所以函數(shù)時單調(diào)遞增,,,

從而函數(shù)時單調(diào)遞增所以,此時(**)成立;

(2) 當(dāng),

①若,必有,故函數(shù)上單調(diào)遞減

所以,

從而函數(shù)時單調(diào)遞減,所以,此時(**)不成立;

② 若,,所以,

故函數(shù)上單調(diào)遞減,,

所以函數(shù)時單調(diào)遞減,所以此時(**)不成立;

所以當(dāng)恒成立時,.

綜上所述當(dāng),恒成立時,

從而實數(shù)的取值集合為.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】幾位大學(xué)生響應(yīng)國家的創(chuàng)業(yè)號召,開發(fā)了三款軟件,為激發(fā)大家學(xué)習(xí)數(shù)學(xué)的興趣,他們推出了解數(shù)學(xué)題獲取軟件激活碼的活動,這三款軟件的激活碼分別為下面數(shù)學(xué)問題的三個答案:已知數(shù)列,其中第一項是,接下來的兩項是,再接下來的三項是,以此類推,試根據(jù)下列條件求出三款軟件的激活碼

1A款應(yīng)用軟件的激活碼是該數(shù)列中第四個三位數(shù)的項數(shù)的平方

2B款應(yīng)用軟件的激活碼是該數(shù)列中第一個四位數(shù)及其前所有項的和

3C款應(yīng)用軟件的激活碼是滿足如下條件的最小整數(shù):①;②該數(shù)列的前項和為2的整數(shù)冪

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】我國2019年新年賀歲大片《流浪地球》自上映以來引發(fā)了社會的廣泛關(guān)注,受到了觀眾的普遍好評.假設(shè)男性觀眾認(rèn)為《流浪地球》好看的概率為,女性觀眾認(rèn)為《流浪地球》好看的概率為.某機構(gòu)就《流浪地球》是否好看的問題隨機采訪了4名觀眾(其中2男2女).

(1)求這4名觀眾中女性認(rèn)為好看的人數(shù)比男性認(rèn)為好看的人數(shù)多的概率;

(2)設(shè)表示這4名觀眾中認(rèn)為《流浪地球》好看的人數(shù),求的分布列與數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】(2017高考新課標(biāo)Ⅲ,19)如圖,四面體ABCD中,ABC是正三角形,ACD是直角三角形,∠ABD=CBD,AB=BD.

(1)證明:平面ACD⊥平面ABC;

(2)過AC的平面交BD于點E,若平面AEC把四面體ABCD分成體積相等的兩部分,求二面角DAEC的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,在四棱錐中,底面是矩形,平面,AB 1,AP AD 2.

(1)求直線與平面所成角的正弦值;

(2)若點M,N分別在AB,PC上,且平面,試確定點M,N的位置.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】以橢圓的離心率為,以其四個頂點為頂點的四邊形的面積等于

1求橢圓的標(biāo)準(zhǔn)方程;

2過原點且斜率不為0的直線與橢圓交于兩點,是橢圓的右頂點,直線分別與軸交于點,問:以為直徑的圓是否恒過軸上的定點?若恒過軸上的定點,請求出該定點的坐標(biāo);若不恒過軸上的定點,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在四棱錐中,底面ABCD是邊長為6的菱形,且平面ABCD,F是棱PA上的一個動點,EPD的中點.

求證:

PC與平面BDF所成角的正弦值;

側(cè)面PAD內(nèi)是否存在過點E的一條直線,使得該直線上任一點MC的連線,都滿足平面BDF,若存在,求出此直線被直線PA、PD所截線段的長度,若不存在,請明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖1,在矩形ABCD中,AB4,AD2,ECD的中點,將△ADE沿AE折起,得到如圖2所示的四棱錐D1ABCE,其中平面D1AE⊥平面ABCE.

(1)證明:BE⊥平面D1AE;

(2)設(shè)FCD1的中點,在線段AB上是否存在一點M,使得MF∥平面D1AE,若存在,求出的值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在直角坐標(biāo)系中,曲線C的方程為.以坐標(biāo)原點為極點,軸正半軸為極軸建立極坐標(biāo)系,直線的極坐標(biāo)方程為

(1)求曲線C的參數(shù)方程和直線的直角坐標(biāo)方程;

(2)若直線軸和y軸分別交于A,B兩點,P為曲線C上的動點,求PAB面積的最大值.

查看答案和解析>>

同步練習(xí)冊答案