【題目】幾位大學(xué)生響應(yīng)國(guó)家的創(chuàng)業(yè)號(hào)召,開發(fā)了三款軟件,為激發(fā)大家學(xué)習(xí)數(shù)學(xué)的興趣,他們推出了解數(shù)學(xué)題獲取軟件激活碼的活動(dòng),這三款軟件的激活碼分別為下面數(shù)學(xué)問題的三個(gè)答案:已知數(shù)列,其中第一項(xiàng)是,接下來的兩項(xiàng)是,再接下來的三項(xiàng)是,以此類推,試根據(jù)下列條件求出三款軟件的激活碼

1A款應(yīng)用軟件的激活碼是該數(shù)列中第四個(gè)三位數(shù)的項(xiàng)數(shù)的平方

2B款應(yīng)用軟件的激活碼是該數(shù)列中第一個(gè)四位數(shù)及其前所有項(xiàng)的和

3C款應(yīng)用軟件的激活碼是滿足如下條件的最小整數(shù):①;②該數(shù)列的前項(xiàng)和為2的整數(shù)冪

【答案】12809;(24083;(31897

【解析】

1)講數(shù)列按照規(guī)律重新書寫成行列形式,依次觀察三位數(shù)出現(xiàn)的順序;

2)根據(jù)第一問重新書寫的形式找到第一個(gè)四位數(shù)1024所在位置即可求和;

3)先確定第1000項(xiàng)出現(xiàn)在哪一行,再計(jì)算前m行所有項(xiàng)之和,要變成2的整數(shù)冪形式需要再加多少,即可求解.

1)由題可以將數(shù)列排成如下形式:

1,

1,2,

12,4

1,24,8,

1,2,4,816,

1,2,4,8,16,32

2的整數(shù)冪可知:第一個(gè)三位數(shù)是

下一行產(chǎn)生第二個(gè)和第三個(gè)三位數(shù),依次是,

下一行產(chǎn)生第四個(gè)三位數(shù)

觀察數(shù)列規(guī)律:①每行的行數(shù)即該行的項(xiàng)數(shù),②第行的最后一項(xiàng),

第三個(gè)三位數(shù)出現(xiàn)在第9行最后一項(xiàng),第四個(gè)三位數(shù)出現(xiàn)在第10行第8項(xiàng),

其項(xiàng)數(shù)為

所以A款應(yīng)用軟件的激活碼是2809.

2)由2的整數(shù)冪可知第一個(gè)四位數(shù)是,第11行第11項(xiàng),根據(jù)規(guī)律:

設(shè)上面數(shù)列第行數(shù)列之和為,可得,

所以第一個(gè)四位數(shù)及其以前所有項(xiàng)之和為

3)由題:前行一共項(xiàng),

由條件①,設(shè),可得,

滿足條件的最小整數(shù)至少在第45行或大于第45行中的某個(gè)項(xiàng)數(shù),

根據(jù)條件②:前行所有項(xiàng)之和

,

要滿足這個(gè)數(shù)是2的整數(shù)冪,必須第行前項(xiàng)之和為,且

項(xiàng)之和

,,即,

要使取值最小,只有當(dāng)時(shí)滿足題意,此時(shí)

所以滿足條件的最小整數(shù).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】函數(shù) 部分圖象如圖所示.

(1)求的最小正周期及解析式;

(2)設(shè),求函數(shù)在區(qū)間上的最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

(Ⅰ)當(dāng)時(shí),判斷函數(shù)的單調(diào)性;

(Ⅱ)當(dāng)時(shí),證明:.(為自然對(duì)數(shù)的底數(shù))

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為培養(yǎng)學(xué)生的閱讀習(xí)慣,某校開展了為期一年的“弘揚(yáng)傳統(tǒng)文化,閱讀經(jīng)典名著”活動(dòng). 活動(dòng)后,為了解閱讀情況,學(xué)校統(tǒng)計(jì)了甲、乙兩組各10名學(xué)生的閱讀量(單位:本),統(tǒng)計(jì)結(jié)果用莖葉圖記錄如下,乙組記錄中有一個(gè)數(shù)據(jù)模糊,無法確認(rèn),在圖中以a表示.

(Ⅰ)若甲組閱讀量的平均值大于乙組閱讀量的平均值, 求圖中a的所有可能取值;

(Ⅱ)將甲、乙兩組中閱讀量超過15本的學(xué)生稱為“閱讀達(dá)人”. 設(shè),現(xiàn)從所有“閱讀達(dá)人”里任取3人,求其中乙組的人數(shù)X的分布列和數(shù)學(xué)期望.

(Ⅲ)記甲組閱讀量的方差為. 在甲組中增加一名學(xué)生A得到新的甲組,若A的閱讀量為10,則記新甲組閱讀量的方差為;若A的閱讀量為20,則記新甲組閱讀量的方差為,試比較,的大小.(結(jié)論不要求證明)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】上海市旅游節(jié)剛落下帷幕,在旅游節(jié)期間,甲、乙、丙三位市民顧客分別獲得一些景區(qū)門票的折扣消費(fèi)券,數(shù)量如表1,已知這些景區(qū)原價(jià)和折扣價(jià)如表2(單位:元).

1

數(shù)量

景區(qū)1

景區(qū)2

景區(qū)3

0

2

2

3

0

1

4

1

0

2

門票

景區(qū)1

景區(qū)2

景區(qū)3

原價(jià)

60

90

120

折扣后價(jià)

40

60

80

1)按照上述表格的行列次序分別寫出這三位市民獲得的折扣消費(fèi)券數(shù)量矩陣A和三個(gè)景區(qū)的門票折扣后價(jià)格矩陣B;

2)利用你所學(xué)的矩陣知識(shí),計(jì)算三位市民各獲得多少元折扣?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在多面體中,底面為矩形,側(cè)面為梯形,,,.

(Ⅰ)求證:;

(Ⅱ)求證:平面;

(Ⅲ)判斷線段上是否存在點(diǎn),使得平面平面?并說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】(2017高考新課標(biāo)Ⅲ19)如圖,四面體ABCD中,ABC是正三角形,ACD是直角三角形,∠ABD=CBD,AB=BD.

(1)證明:平面ACD⊥平面ABC;

(2)過AC的平面交BD于點(diǎn)E,若平面AEC把四面體ABCD分成體積相等的兩部分,求二面角DAEC的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】我國(guó)古代數(shù)學(xué)家祖暅提出原理:“冪勢(shì)既同,則積不容異”.其中“冪”是截面積,“勢(shì)”是幾何體的高.該原理的意思是:夾在兩個(gè)平行平面間的兩個(gè)幾何體,被任一平行于這兩個(gè)平行平面的平面所截,若所截的兩個(gè)截面的面積恒相等,則這兩個(gè)幾何體的體積相等.如圖,在空間直角坐標(biāo)系中的平面內(nèi),若函數(shù)的圖象與軸圍成一個(gè)封閉的區(qū)域,將區(qū)域沿軸的正方向平移8個(gè)單位長(zhǎng)度,得到幾何體如圖一,現(xiàn)有一個(gè)與之等高的圓柱如圖二,其底面積與區(qū)域的面積相等,則此圓柱的體積為__________

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知,實(shí)數(shù),函數(shù),函數(shù).

(Ⅰ)令,當(dāng)時(shí),試討論函數(shù)在其定義域內(nèi)的單調(diào)性;

(Ⅱ)當(dāng)時(shí),令,是否存在實(shí)數(shù),使得對(duì)于函數(shù)定義域中的任意實(shí)數(shù),均存在實(shí)數(shù),有成立?若存在,求出實(shí)數(shù)的取值集合;若不存在,請(qǐng)說明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案