分析 (1)代值計(jì)算即可
(2)用數(shù)學(xué)歸納法證明:(1)當(dāng)n=1時(shí),去證明等式成立;(2)假設(shè)當(dāng)n=k時(shí),等時(shí)成立,用上歸納假設(shè)后,去證明當(dāng)n=k+1時(shí),等式也成立即可.
解答 解:(1)由a1=a,an+1=$\frac{1}{2-{a}_{n-1}}$(n∈N*),a2=$\frac{1}{2-{a}_{1}}$=$\frac{1}{2-a}$,a3=$\frac{1}{2-\frac{1}{2-a}}$=$\frac{2-a}{3-2a}$,a4=$\frac{1}{1-\frac{2-a}{3-2a}}$=$\frac{3-2a}{4-3a}$
(2)猜想an=$\frac{(n-1)-(n-2)a}{n-(n-1)a}$,n∈N*,
下面用數(shù)學(xué)歸納法證明:①當(dāng)n=1時(shí),左邊=a1=a,右邊=$\frac{1-1-(1-2)a}{1-(1-1)a}$,猜想成立.
②假設(shè)n=k時(shí)猜想成立,即ak=$\frac{(k-1)-(k-2)a}{k-(k-1)a}$,
當(dāng)n=k+1時(shí),ak+1=$\frac{1}{2-{a}_{k}}$=$\frac{1}{2-\frac{(k-1)-(k-2)a}{k-(k-1)a}}$=$\frac{k-(k-1)a}{2[k-(k-1)a]-[(k-1)-(k-2)a]}$=$\frac{k-(k-1)a}{(k+1)-[(k+1)-a]a}$,
故當(dāng)n=k+1時(shí),猜想也成立.
由①,②可知,對(duì)任意n∈N*,an=$\frac{(n-1)-(n-2)a}{n-(n-1)a}$,都有成立.
點(diǎn)評(píng) 本題主要考查了數(shù)列的遞推式、數(shù)學(xué)歸納法,考查了學(xué)生綜合運(yùn)用所學(xué)知識(shí)和實(shí)際的運(yùn)算能力
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | ①④ | B. | ①③ | C. | ②③ | D. | ②④ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\frac{13}{4}π$ | B. | $\frac{9}{4}π$ | C. | $\frac{5}{4}π$ | D. | $\frac{7}{3}π$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\frac{7}{9}$ | B. | -$\frac{7}{9}$ | C. | $\frac{2}{9}$ | D. | -$\frac{2}{3}$ |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com