4.在△ABC中,角A、B、C所對(duì)的邊長(zhǎng)分別為a,b,c,若a,b,c成等比數(shù)列且c=2a,則cosB 等于( 。
A.$\frac{3}{4}$B.$\frac{\sqrt{2}}{4}$C.$\frac{1}{4}$D.$\frac{\sqrt{2}}{3}$

分析 運(yùn)用等比數(shù)列的中項(xiàng)的性質(zhì)和條件,可得b=$\sqrt{2}$a,再由余弦定理計(jì)算即可得到所求值.

解答 解:由a,b,c成等比數(shù)列,
則b2=ac,
又c=2a,所以b=$\sqrt{2}$a,
由余弦定理可得cosB=$\frac{{a}^{2}+{c}^{2}-^{2}}{2ac}$=$\frac{{a}^{2}+4{a}^{2}-2{a}^{2}}{4{a}^{2}}$=$\frac{3}{4}$.
故選:A.

點(diǎn)評(píng) 本題考查余弦定理的運(yùn)用,同時(shí)考查等比數(shù)列的中項(xiàng)的性質(zhì),考查轉(zhuǎn)化思想的運(yùn)用,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.已知tanα=$\frac{1}{3}$,tanβ=-$\frac{1}{7}$,α∈(0,$\frac{π}{2}$),β∈($\frac{π}{2}$,π),則2α-β的值是( 。
A.-$\frac{π}{4}$B.$\frac{π}{4}$C.-$\frac{3π}{4}$D.$\frac{3π}{4}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.點(diǎn)P是曲線y=x2-lnx上任意一點(diǎn),則點(diǎn)P到直線y=x+2的最小距離為( 。
A.$\frac{{\sqrt{2}}}{2}$B.$\sqrt{2}$C.2$\sqrt{2}$D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.已知極坐標(biāo)的極點(diǎn)與平面直角坐標(biāo)系的原點(diǎn)重合,極軸與x軸的正半軸重合,且長(zhǎng)度單位相同.曲線C的極坐標(biāo)方程為ρ=2(cosθ+sinθ).
(Ⅰ)求曲線C的直角坐標(biāo)方程;
(Ⅱ)直線l:$\left\{\begin{array}{l}{x=\frac{\sqrt{2}}{2}t}\\{y=1+\frac{\sqrt{2}}{2}t}\end{array}\right.$(t為參數(shù))與曲線C交于A,B兩點(diǎn),與y軸交于點(diǎn)E,求$\frac{1}{|EA|}$+$\frac{1}{|EB|}$的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.設(shè)函數(shù)f(x)=lnx-$\frac{1}{2}$ax2-bx.
(1)當(dāng)a=3,b=2時(shí),求函數(shù)f(x)的單調(diào)區(qū)間;
(2)令F(x)=f(x)+$\frac{1}{2}$ax2+bx+$\frac{a}{x}$(0<x≤3),其圖象上任意一點(diǎn)P(x0,y0)處切線的斜率k≤$\frac{1}{8}$恒成立,求實(shí)數(shù)a的取值范圍;
(3)當(dāng)a=b=0時(shí),令H(x)=f(x)-$\frac{1}{x}$,G(x)=mx,若H(x)與G(x)的圖象有兩個(gè)交點(diǎn)A(x1,y1),B(x2,y2),求證:x1x2>2e2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.已知△ABC是銳角三角形,若∠A>∠B>∠C,則( 。
A.cosA>cosB且sinB>cosCB.cosA<cosB且sinB>cosC
C.cosB>cosC且sinA<cosBD.cosA<cosC且sinB<cosC

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.△ABC的內(nèi)角為A、B、C,其中A=$\frac{π}{4}$,cosC=$\frac{3\sqrt{10}}{10}$,BC=$\sqrt{10}$.點(diǎn)D是邊AC的中點(diǎn),則中線BD的長(zhǎng)為$\sqrt{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.非負(fù)數(shù)的平方是正數(shù)的否定是負(fù)數(shù)的平方是非正數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.某手機(jī)配件生產(chǎn)流水線共有甲、乙兩條,產(chǎn)量s(單位:個(gè))與時(shí)間t(單位:天)的關(guān)系如圖所示,則接近t0天時(shí),下列結(jié)論中正確的是( 。
A.甲的日生產(chǎn)量大于乙的日生產(chǎn)量
B.甲的日生產(chǎn)量小于乙的日生產(chǎn)量
C.甲的日生產(chǎn)量等于乙的日生產(chǎn)量
D.無法判定甲的日生產(chǎn)量與乙的日生產(chǎn)量的大小

查看答案和解析>>

同步練習(xí)冊(cè)答案