【題目】已知四棱錐中,面面,底面為矩形,且,,,O為的中點,點E在上,且.
(1)證明:;
(2)在上是否存在一點F,使面,若存在,試確定點F的位置.
【答案】(1)證明見解析(2)存在F為PB的三等分點(靠近點B),證明見解析
【解析】
(1)連接,利用勾股定理可證明,由面面可得,可得面,即可求證;
(2)取F為PB的三等分點(靠近點B),N為BC的三等分點(靠近點B ),連接,可證明平面平面,即可得證
(1)連接,,如圖,
在四棱錐中,,O為的中點,
,又面面,
面,
在矩形中,,,
由勾股定理知,解得,
,
,
,
又,
面,又平面,
(2)存在F為PB的三等分點(靠近點B).
證明:取BC的三等分點M (靠近點C ) ,連接AM , 如圖
易知,
四邊形是平行四邊形,
,
取BM中點N,連接ON,
N為BM中點, N為BC的三等分點(靠近點B ),
連接,
,
又,
平面平面,又平面
面
科目:高中數(shù)學 來源: 題型:
【題目】某購物商場分別推出支付寶和微信“掃碼支付”購物活動,活動設置了一段時間的推廣期,由于推廣期內(nèi)優(yōu)惠力度較大,吸引越來越多的人開始使用“掃碼支付”.現(xiàn)統(tǒng)計了活動剛推出一周內(nèi)每天使用掃碼支付的人次,用表示活動推出的天數(shù),表示每天使用掃碼支付的人次,統(tǒng)計數(shù)據(jù)如下表所示:
(1)根據(jù)散點圖判斷,在推廣期內(nèi),掃碼支付的人次關于活動推出天數(shù)的回歸方程適合用來表示,求出該回歸方程,并預測活動推出第天使用掃碼支付的人次;
(2)推廣期結(jié)束后,商場對顧客的支付方式進行統(tǒng)計,結(jié)果如下表:
支付方式 | 現(xiàn)金 | 會員卡 | 掃碼 |
比例 |
商場規(guī)定:使用現(xiàn)金支付的顧客無優(yōu)惠,使用會員卡支付的顧客享受折優(yōu)惠,掃碼支付的顧客隨機優(yōu)惠,根據(jù)統(tǒng)計結(jié)果得知,使用掃碼支付的顧客,享受折優(yōu)惠的概率為,享受折優(yōu)惠的概率為,享受折優(yōu)惠的概率為.現(xiàn)有一名顧客購買了元的商品,根據(jù)所給數(shù)據(jù)用事件發(fā)生的頻率來估計相應事件發(fā)生的概率,估計該顧客支付的平均費用是多少?
參考數(shù)據(jù):設,,,
參考公式:對于一組數(shù)據(jù),,…,,其回歸直線的斜率和截距的最小二乘估計公式分別為:,.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在平面直角坐標系中,直線過點,傾斜角為.以原點為極點,軸正半軸為極軸建立極坐標系,曲線的極坐標方程.
(1)寫出直線的參數(shù)方程及曲線的直角坐標方程;
(2)若與相交于,兩點,為線段的中點,且,求.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】下列說法正確的是( )
A.,“”是“”的必要不充分條件
B.“為真命題”是“為真命題”的必要不充分條件
C.命題“”的否定是:“使得”
D.命題p:“”,則是真命題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】下列說法正確的是( )
A.命題“若x2=1,則x=1”的否命題為“若x2=1,則x≠1”
B.命題“x0∈R,x0﹣1<0”的否定是“x∈R,x2+x﹣1>0”
C.命題“若x=y,則sin x=sin y”的逆否命題為假命題
D.若“p或q”為真命題,則p,q中至少有一個為真命題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知,點在軸上,點在軸上,且,,當點在軸上運動時,動點的軌跡為曲線.過軸上一點的直線交曲線于,兩點.
(1)求曲線的軌跡方程;
(2)證明:存在唯一的一點,使得為常數(shù),并確定點的坐標.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】年是打贏藍天保衛(wèi)戰(zhàn)三年行動計劃的決勝之年,近年來,在各地各部門共同努力下,藍天保衛(wèi)戰(zhàn)各項任務措施穩(wěn)步推進,取得了積極成效,某學生隨機收集了甲城市近兩年上半年中各天的空氣量指數(shù),得到頻數(shù)分布表如下:
年上半年中天的頻數(shù)分布表
的分組 | |||||
天數(shù) |
年上半年中天的頻數(shù)分布表
的分組 | |||||
天數(shù) |
(1)估計年上半年甲城市空氣質(zhì)量優(yōu)良天數(shù)的比例;
(2)求年上半年甲城市的平均數(shù)和標準差的估計值(同一組中的數(shù)據(jù)用該組區(qū)間的中點值為代表);(精確到)
(3)用所學的統(tǒng)計知識,比較年上半年與年上半年甲城市的空氣質(zhì)量情況.
附:
的分組 | ||||||
空氣質(zhì)量 | 優(yōu) | 良 | 輕度污染 | 中度污染 | 重度污染 | 嚴重污染 |
.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】一個籠子里關著只貓,其中有只白貓,只黑貓.把籠門打開一個小口,使得每次只能鉆出只貓.貓爭先恐后地往外鉆.如果只貓都鉆出了籠子,以表示只白貓被只黑貓所隔成的段數(shù).例如,在出籠順序為“□■□□□□■□□■”中,則.
(1)求三只黑貓挨在一起出籠的概率;
(2)求的分布列和數(shù)學期望.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖:某快遞小哥從A地出發(fā),沿小路以平均時速20公里/小時,送快件到C處,已知(公里),,,是等腰三角形,.
(1)試問,快遞小哥能否在50分鐘內(nèi)將快件送到C處?
(2)快遞小哥出發(fā)15分鐘后,快遞公司發(fā)現(xiàn)快件有重大問題,由于通訊不暢,公司只能派車沿大路追趕,若汽車平均時速60公里/小時,問,汽車能否先到達C處?
參考值:,, .
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com