18.已知橢圓C的兩個(gè)焦點(diǎn)是F1(-2,0),F(xiàn)2(2,0),且橢圓C經(jīng)過點(diǎn)A(0,$\sqrt{5}$).
(1)求橢圓C的標(biāo)準(zhǔn)方程;
(2)若過橢圓C的左焦點(diǎn)F1(-2,0)且斜率為1的直線l與橢圓C交于P、Q兩點(diǎn),求線段PQ的長(提示:|PQ|=$\sqrt{1+{k}^{2}}$|x1-x2|).

分析 (1)利用待定系數(shù)法求出橢圓方程;
(2)聯(lián)立方程組,利用根與系數(shù)的關(guān)系和弦長公式計(jì)算弦長.

解答 解:(1)由題意可知橢圓焦點(diǎn)在x軸上,設(shè)橢圓方程為$\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{^{2}}=1$(a>b>0),
由題意可知$\left\{\begin{array}{l}{{a}^{2}-^{2}={c}^{2}}\\{c=2}\\{b=\sqrt{5}}\end{array}\right.$,∴a=3,b=$\sqrt{5}$.
∴橢圓的標(biāo)準(zhǔn)方程為$\frac{{x}^{2}}{9}+\frac{{y}^{2}}{5}$=1.
(2)直線l的方程為y=x+2,
聯(lián)立方程組$\left\{\begin{array}{l}{y=x+2}\\{\frac{{x}^{2}}{9}+\frac{{y}^{2}}{5}=1}\end{array}\right.$,得14x2+36x-9=0,
設(shè)P(x1,y1),Q(x2,y2),則x1+x2=-$\frac{18}{7}$,x1x2=-$\frac{9}{14}$,
∴|PQ|=$\sqrt{2}$|x1-x2|=$\sqrt{2}$$\sqrt{({x}_{1}+{x}_{2})^{2}-4{x}_{1}{x}_{2}}$=$\sqrt{2}$$\sqrt{\frac{324}{49}+\frac{18}{7}}$=$\frac{30}{7}$.

點(diǎn)評(píng) 本題考查了橢圓的性質(zhì),弦長公式,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.已知復(fù)數(shù)ω是1的一個(gè)立方根,則1+ω+ω2+…+ω2017的所有可能值組合成的集合為{2018,$\frac{1}{2}+\frac{\sqrt{3}}{2}i$,$\frac{1}{2}-\frac{\sqrt{3}}{2}i$}.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.若函數(shù)f(x)=x3+x2+mx+1是R上的單調(diào)增函數(shù),則實(shí)數(shù)m的取值范圍是$[\frac{1}{3},+∞)$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.為了解某地房價(jià)環(huán)比(所謂環(huán)比,簡單說就是與相連的上一期相比)漲幅情況,如表記錄了某年1月到5月的月份x(單位:月)與當(dāng)月上漲的百比率y之間的關(guān)系:
時(shí)間x12345
上漲率y0.10.20.30.30.1
(1)根據(jù)如表提供的數(shù)據(jù),求y關(guān)于x的線性回歸方程y=$\widehat$x+$\widehat{a}$;
(2)預(yù)測該地6月份上漲的百分率是多少?
(參考公式:用最小二乘法求線性回歸方程系數(shù)公式$\widehat$=$\frac{{\sum_{i=1}^n{({{x_i}-\overline x})({{y_i}-\overline y})}}}{{\sum_{i=1}^n{{{({{x_i}-\overline x})}^2}}}}=\frac{{\sum_{i=1}^n{({{x_i}{y_i}})-n\overline x\overline y}}}{{\sum_{i=1}^n{{x_i}^2-n{{\overline x}^2}}}}$,$\widehat{a}$=$\overline{y}$-$\widehat$$\overline{x}$)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.求滿足下列條件的方法種數(shù):
(1)將4個(gè)不同的小球,放進(jìn)4個(gè)不同的盒子,且沒有空盒子,共有多少種放法?
(2)將4個(gè)不同的小球,放進(jìn)3個(gè)不同的盒子,且沒有空盒子,共有多少種放法?(最后結(jié)果用數(shù)字作答)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.若x、y滿足約束條件$\left\{\begin{array}{l}{x+2y≤1}\\{2x+y≥-1}\\{x-y≤0}\end{array}\right.$,則z=3x-2y的最小值為( 。
A.$\frac{1}{3}$B.-$\frac{1}{3}$C.-5D.5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.某校從高一年級(jí)學(xué)生中隨機(jī)抽取部分學(xué)生,將他們的模塊測試成績分為6組:[40,50),[50,60),[60,70),[70,80),[80,90),[90,100)加以統(tǒng)計(jì),得到如圖所示的頻率分布直方圖,已知高一年級(jí)共有學(xué)生600名,據(jù)此估計(jì),該模塊測試成績不少于60分的學(xué)生人數(shù)為480.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.已知集合A={x∈Z|x2-4x-5<0},B={x|x>m},若A∩(∁RB)有三個(gè)元素,則實(shí)數(shù)m的取值范圍是(  )
A.[3,4)B.[1,2)C.[2,3)D.(2,3]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.執(zhí)行如圖所示的程序框圖,輸出的S的值為(  )
A.0B.-1C.$\frac{1}{2}$D.$-\frac{3}{2}$

查看答案和解析>>

同步練習(xí)冊答案