若復(fù)數(shù)z滿足z(1+i)=2i(i為虛數(shù)單位),則|z|=
 
考點:復(fù)數(shù)求模
專題:數(shù)系的擴充和復(fù)數(shù)
分析:利用復(fù)數(shù)的運算法則、模的計算公式即可得出.
解答: 解:∵復(fù)數(shù)z滿足z(1+i)=2i,
∴(1-i)z(1+i)=2i(1-i),
化為2z=2(i+1),
∴z=1+i.
∴|z|=
2

故答案為:
2
點評:本題考查了復(fù)數(shù)的運算法則、模的計算公式,屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

如圖所示,函數(shù)y=2sin(ωx+ϕ)(x∈R,ω>0,0≤ϕ≤
π
2
)的圖象與y軸交于點(0,
3
),且該函數(shù)的最小正周期為π.
(1)求ω和ϕ的值;
(2)已知點A(
π
2
,0),點P是該函數(shù)圖象上一點,點Q(x0,y0)是PA的中點,當(dāng)y0=
3
2
x0∈[
π
2
,π]
時,求x0的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)f(x)=2x2-3x(-1≤x≤2)的值域為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知雙曲線
x2
25
-
y2
24
=1上一點M到右焦點F的距離為11,N為線段MF的中點,O為坐標(biāo)原點,則|ON|=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

對于定義在R上的函數(shù)f(x),給出下列說法:
①若f(x)是偶函數(shù),則f(-2)=f(2);
②若f(-2)=f(2),則函數(shù)f(x)是偶函數(shù);
③若f(-2)≠f(2),則函數(shù)f(x)不是偶函數(shù);
④若f(-2)=f(2),則函數(shù)f(x)不是奇函數(shù).
其中,正確的說法是
 
.(填序號)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)a,b∈(0,1),則關(guān)于x的方程x2+2ax+b2=0在(-∞,∞)上有兩個不同的零點的概率為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知奇函數(shù)f(x)是R上的減函數(shù),且f(3)=-2,設(shè)P={x||f(x+t)-1|<1},Q={x|f(x)<-2},若“x∈Q”是“x∈P”的必要不充分條件,則實數(shù)t的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=(
x
+
2
2,(x≥0),又?jǐn)?shù)列{an}中a1=2,其前n項和為Sn,(n∈N*),對所有大于1的自然數(shù)n都有Sn=f(Sn-1),則數(shù)列{an}的通項公式
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)y=-
3
sin2x+cos2x,x∈[
π
6
,
π
2
]的值域為
 

查看答案和解析>>

同步練習(xí)冊答案