分析 先求導,方程x2-mx+1=0在(0,+∞)上有根求出m的范圍,根據(jù)韋達定理即可化簡f(x1)+f(x2),根據(jù)m的范圍即可求出.
解答 解:∵f(x)的定義域是(0,+∞),
f′(x)=x-m+$\frac{1}{x}$=$\frac{{x}^{2}-mx+1}{x}$,
∵f(x)存在極值,
∴f′(x)=0在(0,+∞)上有根,
即方程x2-mx+1=0在(0,+∞)上有根.
設方程x2-mx+1=0的兩根為x1,x2,
∴△=m2-4>0,x1+x2=m>0,x1x2=1
即m>2
∴f(x1)+f(x2)=$\frac{1}{2}$(x12+x22)-m(x1+x2)+(lnx1+lnx2),
=$\frac{1}{2}$(x1+x2)2-x1x2-m(x1+x2)+lnx1x2,
=$\frac{1}{2}$m2-1-m2,
=-$\frac{1}{2}$m2-1<-3,
故函數(shù)f(x)的極值之和的取值范圍是(-∞,-3)
故答案為:(-∞,-3)
點評 本題考查了導數(shù)函數(shù)極值的關系,以及韋達定理及二次函數(shù)的性質(zhì),考查了分析問題解決問題的能力,屬于中檔題
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | p是假命題 | B. | ¬p是真命題 | C. | p∨q是真命題 | D. | p∧q是假命題 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 充分不必要條件 | B. | 必要不充分條件 | ||
C. | 充要條件 | D. | 既不充分也不必要條件 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com