分析 (Ⅰ)作AC的中點O,由A1A=A1C,且O為AC的中點,得A1O⊥AC,再由面面垂直的性質可得A1O⊥底面ABC,以O為坐標原點,OB、OC、OA1所在直線分別為x、y、z軸建立空間直角坐標系,求出所用點的坐標,由$\overrightarrow{{A}_{1}B}•\overrightarrow{AC}$=0,可得AC⊥A1B;
(Ⅱ)平面AA1C的一個法向量為$\overrightarrow{n}=(1,0,0)$,設平面A1CB的一個法向量$\overrightarrow{m}=(x,y,z)$,求出$\overrightarrow{m}$,由兩法向量所成角的余弦值可得二面角A-A1C-B的余弦值.
解答 (Ⅰ)證明:作AC的中點O,∵A1A=A1C,且O為AC的中點,∴A1O⊥AC,
又側面AA1C1C⊥底面ABC,其交線為AC,且A1O?平面AA1C1C,
∴A1O⊥底面ABC,
以O為坐標原點,OB、OC、OA1所在直線分別為x、y、z軸建立空間直角坐標系,
由已知得:O(0,0,0),A(0,-1,0),A1(0,0,$\sqrt{3}$),C(0,1,0),C1(0,2,$\sqrt{3}$),B(1,0,0).
則有:$\overrightarrow{{A}_{1}B}=(1,0,-\sqrt{3})$,$\overrightarrow{AC}=(0,2,0)$,
∵$\overrightarrow{{A}_{1}B}•\overrightarrow{AC}$=0,∴AC⊥A1B;
(Ⅱ)解:平面AA1C的一個法向量為$\overrightarrow{n}=(1,0,0)$.
設平面A1CB的一個法向量$\overrightarrow{m}=(x,y,z)$,
由$\left\{\begin{array}{l}{\overrightarrow{m}•\overrightarrow{{A}_{1}C}=y-\sqrt{3}z=0}\\{\overrightarrow{m}•\overrightarrow{{A}_{1}B}=x-\sqrt{3}z=0}\end{array}\right.$,取z=1,得$\overrightarrow{m}=(\sqrt{3},\sqrt{3},1)$.
∴cos<$\overrightarrow{m},\overrightarrow{n}$>=$\frac{\overrightarrow{m}•\overrightarrow{n}}{|\overrightarrow{m}||\overrightarrow{n}|}=\frac{\sqrt{3}}{1×\sqrt{7}}=\frac{\sqrt{21}}{7}$.
∴二面角A-A1C-B的余弦值為$\frac{\sqrt{21}}{7}$.
點評 本題考查直線與直線的位置關系,訓練了利用空間向量求異面直線所成角及二面角,是中檔題.
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\frac{1}{2}$ | B. | 1 | C. | 2 | D. | 4 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\frac{5}{12}$ | B. | $\frac{1}{3}$ | C. | $\frac{1}{4}$ | D. | $\frac{1}{6}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | x-y+2=0 | B. | x+y-2=0 | C. | x-y-2=0 | D. | x+y+2=0 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com