用反證法證明命題:“若整系數(shù)一元二次方程有有理根,那么中至少有一個(gè)是偶數(shù)時(shí),下列假設(shè)中正確的是
A.假設(shè)都是偶數(shù) |
B.假設(shè)都不是偶數(shù) |
C.假設(shè)至多有一個(gè)是偶數(shù) |
D.假設(shè)至多有兩個(gè)是偶數(shù) |
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:單選題
“若,則是函數(shù)的極值點(diǎn),因?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/9b/3/sviwf.png" style="vertical-align:middle;" />中, 且,所以0是的極值點(diǎn).”在此“三段論”中,下列說法正確的是( 。
A.推理過程錯(cuò)誤 | B.大前提錯(cuò)誤 | C.小前提錯(cuò)誤 | D.大、小前提錯(cuò)誤 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:單選題
推理:因?yàn)槠叫兴倪呅螌?duì)邊平行且相等,而矩形是特殊的平行四邊形,所以矩形的對(duì)邊平行且相等.以上推理的方法是( )
A.合情推理 | B.演繹推理 | C.歸納推理 | D.類比推理 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:單選題
用演繹法證明函數(shù)是增函數(shù)時(shí)的小前提是
A.增函數(shù)的定義 |
B.函數(shù)滿足增函數(shù)的定義 |
C.若,則 |
D.若,則 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:單選題
對(duì)任意實(shí)數(shù),定義運(yùn)算,其中是常數(shù),等式右邊的運(yùn)算是通常的加法和乘法運(yùn)算。已知,并且有一個(gè)非零常數(shù),使得對(duì)任意實(shí)數(shù), 都有,則的值是( )
A. | B. | C. | D. |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:單選題
用反證法證明命題“設(shè)為實(shí)數(shù),則方程至少有一個(gè)實(shí)根”時(shí),要做的假設(shè)是( )
A.方程沒有實(shí)根 | B.方程至多有一個(gè)實(shí)根 |
C.方程至多有兩個(gè)實(shí)根 | D.方程恰好有兩個(gè)實(shí)根 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:單選題
設(shè)a,b∈R,則“a+b=1”是“4ab≤1”的( )
A.充分不必要條件 | B.必要不充分條件 |
C.充要條件 | D.既不充分也不必要條件 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:單選題
已知“整數(shù)對(duì)”按如下規(guī)律排成一列:(1,1),(1,2),(2,1),(1,3),(2,2),(3,1),(1,4),(2,3),(3,2),(4,1),…,則第60個(gè)“整數(shù)對(duì)”是( )
A.(7,5) | B.(5,7) | C.(2,10) | D.(10,1) |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com