若拋物線的焦點(diǎn)與雙曲線的右焦點(diǎn)重合,則的值為( )
A.2 B.4 C.8 D.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源:2015屆山東廣饒一中高二上學(xué)期期末質(zhì)量檢測文科數(shù)學(xué)試卷B(解析版) 題型:選擇題
已知是奇函數(shù),當(dāng)時(shí),,當(dāng)時(shí),的最小值為1,則的值等于( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2015屆安徽省合肥六中高二下學(xué)期期末文數(shù)學(xué)試卷(解析版) 題型:填空題
1、執(zhí)行如圖所示的程序框圖,則輸出的值為_______________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2015屆安徽師大附中高二下學(xué)期期中考查理科數(shù)學(xué)試卷(解析版) 題型:填空題
在下列命題中:
①若向量a,b共線,則向量a,b所在的直線平行;
②若向量a,b所在的直線為異面直線,則向量a,b一定不共面;
③若三個(gè)向量a,b,c兩兩共面,則向量a,b,c共面;
④共面的三個(gè)向量是指平行于同一個(gè)平面的的三個(gè)向量;
⑤已知空間的三個(gè)不共線的向量a,b,c,則對(duì)于空間的任意一個(gè)向量p總存在實(shí)數(shù)x,y,z使得p=xa+yb+zc.其中正確命題是 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2015屆安徽師大附中高二下學(xué)期期中考查理科數(shù)學(xué)試卷(解析版) 題型:選擇題
已知是的充分條件而不是必要條件,是的充分條件,是的必要條件,是的必要條件。現(xiàn)有下列命題:①是的充要條件;②是的必要條件而不是充分條件;③是的充分條件而不是必要條件;④是的充分條件而不是必要條件;⑤的必要條件而不是充分條件,則正確命題序號(hào)是( )
A.①③⑤ B.①④⑤ C.②③④ D.③④⑤
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2015屆安徽師大附中高二下學(xué)期期中考查文科數(shù)學(xué)試卷(解析版) 題型:解答題
在平面直角坐標(biāo)系中,已知?jiǎng)狱c(diǎn)到點(diǎn)的距離為,到軸的距離為,且.
(1)求點(diǎn)的軌跡的方程;
(2) 若直線斜率為1且過點(diǎn),其與軌跡交于點(diǎn),求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2015屆安徽師大附中高二下學(xué)期期中考查文科數(shù)學(xué)試卷(解析版) 題型:選擇題
若的大小關(guān)系 ( )
A. B.
C. D.與x的取值有關(guān)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2015屆寧夏高二下學(xué)期期中考試?yán)砜茢?shù)學(xué)試卷(解析版) 題型:填空題
現(xiàn)有一個(gè)關(guān)于平面圖形的命題:如圖所示,同一個(gè)平面內(nèi)有兩個(gè)邊長都是的正方形,其中一個(gè)的某頂點(diǎn)在另一個(gè)的中心,則這兩個(gè)正方形重疊部分的面積恒為;類比到空間,有兩個(gè)棱長均為的正方體,其中一個(gè)的某頂點(diǎn)在另一個(gè)的中心,則這兩個(gè)正方體重疊部分的體積恒為 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2015屆天津市紅橋區(qū)高二下學(xué)期期末考試?yán)砜茢?shù)學(xué)試卷(解析版) 題型:解答題
分別寫出下列命題的逆命題、逆否命題,并判斷它們的真假:
(1)若q<1,則方程x2+2x+q=0有實(shí)根;
(2)若x2+y2=0,則x,y全為零.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com