10.(1)已知圓M過點C(1,-1),D(-1,1),且圓心M在x+y-2=0上.求圓M的方程;
(2)圓O的方程為x2+y2=1,直線l1過點A(3,0),且與圓O相切,求直線l1的方程.

分析 (1)設(shè)出圓的標準方程,由已知列關(guān)于a,b,r的方程組,求解方程組得到a,b,r的值,則圓的方程可求;
(2)由題意可知直線線l1的斜率存在,寫出直線方程點斜式,化為一般式,由圓心到直線的距離等于圓的半徑求得k,則直線l1的方程可求.

解答 解:(1)設(shè)圓M的方程為(x-a)2+(y-b)2=r2,
根據(jù)題意得:$\left\{\begin{array}{l}(1-a{)^2}+{(-1-b)^2}={r^2}\\(-1-a{)^2}+{(1-b)^2}={r^2}\\ a+b-2=0\end{array}\right.$,解得$\left\{\begin{array}{l}a=1\\ b=1\\{r^2}=4\end{array}\right.$.
故圓M的方程為(x-1)2+(y-1)2=4;
(2)∵直線l1過點A(3,0),且與圓C:x2+y2=1相切,可知直線l1的斜率存在,
設(shè)直線l1的方程為y=k(x-3),即kx-y-3k=0,
∴圓心O(0,0)到直線l1的距離d=$\frac{{|{3k}|}}{{\sqrt{{k^2}+1}}}$=1,解得k=±$\frac{{\sqrt{2}}}{4}$,
∴直線l1的方程為y=±$\frac{{\sqrt{2}}}{4}$(x-3).

點評 本題考查圓的方程的求法,考查直線與圓位置關(guān)系的應(yīng)用,訓(xùn)練了利用待定系數(shù)法求圓的方程,是中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.計算:${lg^2}2+{lg^2}5+2lg2•lg5+{log_8}9•{log_{27}}32+{π^{{{log}_π}2}}+{(3\frac{3}{8})^{-\frac{2}{3}}}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.$f(x)={log_2}\frac{x}{2}{log_{\sqrt{2}}}\frac{{\sqrt{x}}}{2}$,其中x滿足${3^{2x-4}}-\frac{10}{3}×{3^{x-1}}+9≤0$.
(1)求實數(shù)x的取值范圍;
(2)求f(x)的最大值及取得最大值時的x的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.已知A(4sin θ,6cos θ),B(-4cos θ,6sin θ),當(dāng)θ為一切實數(shù)時,線段AB的中點軌跡為(  )
A.直線B.C.橢圓D.雙曲線

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.設(shè)拋物線C:y2=2px(p>0)的焦點為F,點M在C上,|MF|=5,若y軸上存在點A(0,2),使得$\overrightarrow{AM}•\overrightarrow{AF}=0$,則p的值為( 。
A.2或8B.2C.8D.4或8

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.(1)求與直線3x+4y+1=0平行且過(1,2)的直線方程;
(2)求與直線2x+y-10=0垂直且過(2,1)的直線方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.函數(shù)f(x)的導(dǎo)函數(shù)為f′(x),則f′(x)>0是f(x)遞增的( 。l件.
A.充分不必要B.必要不充分
C.充要D.既不充分也不必要

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.若x=15°,則sin4x-cos4x的值為( 。
A.$\frac{\sqrt{3}}{2}$B.-$\frac{\sqrt{3}}{2}$C.-$\frac{1}{2}$D.$\frac{1}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.記cos(-80°)=k,那么tan(-80o)=( 。
A.-$\frac{\sqrt{1-{k}^{2}}}{k}$B.$\frac{\sqrt{1-{k}^{2}}}{k}$C.$\frac{k}{\sqrt{1-{k}^{2}}}$D.-$\frac{k}{\sqrt{1-{k}^{2}}}$

查看答案和解析>>

同步練習(xí)冊答案