14.已知函數(shù)f(x)=x3-3x2
(Ⅰ) 求f(x)的單調(diào)區(qū)間;
(Ⅱ) 若f(x)的定義域為[-1,m]時,值域為[-4,0],求m的最大值.

分析 (Ⅰ)求出函數(shù)的導(dǎo)數(shù),解關(guān)于導(dǎo)函數(shù)的不等式,求出函數(shù)的單調(diào)區(qū)間即可;(Ⅱ)問題轉(zhuǎn)化為f(m)≤0,求出m的最大值即可.

解答 解:(Ⅰ)f′(x)=3x2-6x=3x(x-2),
令f′(x)>0,解得:x>2或x<0,
令f′(x)<0,解得:0<x<2,
故f(x)在(-∞,0)遞增,在(0,2)遞減,在(2,+∞)遞增;
(Ⅱ)由(Ⅰ)f(-1)=-4,
故f(m)=m3-3m2≤0,解得:m≤3,
故m的最大值是3.

點評 本題考查了函數(shù)的單調(diào)性、最值問題,考查導(dǎo)數(shù)的應(yīng)用,是一道中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.某同學(xué)用“五點法”畫函數(shù)f(x)=Asin(ωx+φ),(ω>0,|φ|<$\frac{π}{2}$)在某一個周期內(nèi)的圖象時,列表并填入了部分?jǐn)?shù)據(jù),如下表:
ωx+φ0$\frac{π}{2}$π$\frac{3π}{2}$
x$\frac{π}{3}$$\frac{5π}{6}$
f(x)=Asin(ωx+φ),05-50
(1)請將上表數(shù)據(jù)補充完整,并直接寫出函數(shù)f(x)的解析式;
(2)將y=f(x)圖象上所有點向左平移動$\frac{π}{6}$個單位長度,得到y(tǒng)=g(x)圖象,求y=g(x),x∈(-$\frac{π}{4}$,$\frac{π}{4}$)的單調(diào)增區(qū)間和值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.命題“?x≠0,x2>0”的否定是( 。
A.?x≠0,x2≤0B.?x=0,x2≤0C.?x0≠0,${x_0}^2≤0$D.?x0=0,${x_0}^2≤0$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.設(shè){an}(n∈N*)是各項為正數(shù)的等比數(shù)列,q是其公比,Tn是其前n項的積,且T5<T6,T6=T7>T8,則下列結(jié)論錯誤的是( 。
A.0<q<1B.a7=1
C.T6與T7均為Tn的最大值D.T9>T5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.拋物線y=$\frac{1}{8}$x2的準(zhǔn)線方程為( 。
A.$y=-\frac{1}{32}$B.y=-2C.x=-2D.x=-$\frac{1}{32}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.在△ABC中,若$a=\sqrt{3}$,c=2,$cosB=\frac{1}{3}$,則△ABC的面積為(  )
A.$\frac{{\sqrt{3}}}{3}$B.$\frac{{2\sqrt{3}}}{3}$C.$\frac{{2\sqrt{6}}}{3}$D.$\frac{{4\sqrt{6}}}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.若將函數(shù)y=sinx+$\sqrt{3}$cosx的圖象向右平移φ(φ>0)個單位長度得到函數(shù)y=sinx-$\sqrt{3}$cosx的圖象,則φ的最小值為( 。
A.$\frac{π}{6}$B.$\frac{π}{2}$C.$\frac{π}{3}$D.$\frac{2π}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.已知向量$\overrightarrow{a}$,$\overrightarrow$,$\overrightarrow{c}$是同一平而內(nèi)的三個向量,其中$\overrightarrow{a}$=(1,-1).
(1)若|$\overrightarrow{c}$|=3$\sqrt{2}$,且$\overrightarrow{c}$∥$\overrightarrow{a}$,求向量$\overrightarrow{c}$的坐標(biāo);
(2)若|$\overrightarrow$|=1,且$\overrightarrow{a}$⊥($\overrightarrow{a}$-2$\overrightarrow$),求$\overrightarrow{a}$與$\overrightarrow$的夾角θ.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.i是虛數(shù)單位,若復(fù)數(shù)(x2-5x+6)+(x-3)i是純虛數(shù),則實數(shù)x的值為2.

查看答案和解析>>

同步練習(xí)冊答案