9.設(shè)集合A={x|x2-3x-4≤0},B={x||x|≤3},則集合A∩B=(  )
A.[-3,-1]B.[-3,4]C.[-1,3]D.[3,4]

分析 根據(jù)題意,解x2-3x-4≤0可得集合A,解|x|≤3可得集合B,進(jìn)而由交集的定義計算可得答案.

解答 解:根據(jù)題意,x2-3x-4≤0⇒-1≤x≤4,
即A={x|x2-3x-4≤0}={x|-1≤x≤4}=[-1,4],
|x|≤3⇒-3≤x≤3,
即B={x||x|≤3}={x|-3≤x≤3}=[-3,3],
則A∩B=[-1,3],
故選:C.

點評 本題考查集合的交集運算,關(guān)鍵是掌握集合的交集的定義.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.春節(jié)來臨,有農(nóng)民工兄弟A、B、C、D四人各自通過互聯(lián)網(wǎng)訂購回家過年的火車票,若訂票成功即可獲得火車票,即他們獲得火車票與否互不影響.若A、B、C、D獲得火車票的概率分別是${p_1},\frac{1}{2},{p_3},\frac{1}{4}$,其中p1>p3,又${p_1},\frac{1}{2},2{p_3}$成等比數(shù)列,且A、C兩人恰好有一人獲得火車票的概率是$\frac{1}{2}$.
(1)求p1,p3的值;
(2)若C、D是一家人且兩人都獲得火車票才一起回家,否則兩人都不回家.設(shè)X表示A、B、C、D能夠回家過年的人數(shù),求X的分布列和期望EX.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.如圖,在底面為直角梯形的四棱錐P-ABCD中,E為PC的中點,AD∥BC,∠ABC=90°,PA⊥平面ABCD,PA=2,AD=2,AB=2$\sqrt{3}$,BC=4.
(1)求證:DE∥平面PAB;
(2)求直線AE與平面PCD所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.為比較甲乙兩地某月11時的氣溫情況,隨機選取該月中的5天中11時的氣溫數(shù)據(jù)(位:℃)制成如圖所示的莖葉圖,已知甲地該月11時的平均氣溫比乙地該月11時的平均氣溫高1℃,則甲地該月11時的平均氣溫的標(biāo)準(zhǔn)差為(  )
A.2B.$\sqrt{2}$C.10D.$\sqrt{10}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.已知R為實數(shù)集,集合A={x|x2-2x≥0},B={x|x>1},則(∁RA)∩B=( 。
A.(0,1)B.(0,1]C.(1,2)D.(1,2]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.已知a,b,c分別為△ABC三個內(nèi)角A,B,C的對邊,且$acosC+\sqrt{3}asinC=b+c$.
(1)求A;
(2)若$a=\sqrt{7}$,△ABC的面積為$\frac{{3\sqrt{3}}}{2}$,求b與c的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.已知向量$\overrightarrow{m}$=(-1,2),$\overrightarrow{n}$=(1,λ),若$\overrightarrow{m}$⊥$\overrightarrow{n}$,則$\overrightarrow{m}$+2$\overrightarrow{n}$與$\overrightarrow{m}$的夾角為( 。
A.$\frac{2π}{3}$B.$\frac{3π}{4}$C.$\frac{π}{3}$D.$\frac{π}{4}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.已知定義在R上的函數(shù)f(x)滿足:①f(x)+f(2-x)=0;②f(x)-f(-2-x)=0;③在[-1,1]上的表達(dá)式為$f(x)=\left\{\begin{array}{l}\sqrt{1-{x^2}},x∈[-1,0]\\ 1-x,x∈(0,1]\end{array}\right.$,則函數(shù)f(x)與$g(x)=\left\{\begin{array}{l}{2^x},x≤0\\{log_{\frac{1}{2}}}x,x>0\end{array}\right.$的圖象在區(qū)間[-3,3]上的交點的個數(shù)為6.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.若雙曲線E:$\frac{{x}^{2}}{{a}^{2}}$$-\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)的一個焦點為F(3,0),過F點的直線l與雙曲線E交于A,B兩點,且AB的中點為P(-3,-6),則E的方程為( 。
A.$\frac{{x}^{2}}{5}$$-\frac{{y}^{2}}{4}$=1B.$\frac{{x}^{2}}{4}$$-\frac{{y}^{2}}{5}$=1C.$\frac{{x}^{2}}{6}$$-\frac{{y}^{2}}{3}$=1D.$\frac{{x}^{2}}{3}$$-\frac{{y}^{2}}{6}$=1

查看答案和解析>>

同步練習(xí)冊答案