15.已知P(t,3t),t∈R,M是圓O1:(x+2)2+y2=$\frac{1}{4}$上的動(dòng)點(diǎn),N是O2:(x-4)2+y2=$\frac{1}{4}$上的動(dòng)點(diǎn),則|PN|-|PM|的最大值是(  )
A.$\frac{3\sqrt{5}}{5}$+1B.$\frac{3\sqrt{5}}{5}-1$C.$\frac{6\sqrt{5}}{5}$+1D.$\frac{6\sqrt{5}}{5}$

分析 先根據(jù)兩圓的方程求出圓心和半徑,把求|PN||-|PM|的最大值轉(zhuǎn)化為|PO1|-|PO2|+1的最大值,再利用|PO1|-|PO2|=|PE′|-|PO2|≤|E′O2|=$\frac{6\sqrt{5}}{5}$,求出所求式子的最大值.

解答 解:圓O1:(x+2)2+y2=$\frac{1}{4}$上的圓心O1(-2,0),圓O2:(x-4)2+y2=$\frac{1}{4}$的圓心O2(4,0),這兩個(gè)圓的半徑都是$\frac{1}{2}$.
要使|PN||-|PM|最大,需|PN|最大,且|PM|最小,|PN|最大值為|PO1|+$\frac{1}{2}$,|PM|的最小值為|PO2|-$\frac{1}{2}$,
故|PN||-|PM|最大值是|PO1|-|PO2|+1,
點(diǎn)P(t,3t)在直線y=3x上,O1(-2,0)關(guān)于y=3x的對(duì)稱點(diǎn)E′($\frac{8}{5}$,-$\frac{6}{5}$),
則|PO1|-|PO2|=|PE′|-|PO2|≤|E′O2|=$\frac{6\sqrt{5}}{5}$,故|PF|-|PE|+1的最大值為$\frac{6\sqrt{5}}{5}$+1,
故選:C.

點(diǎn)評(píng) 本題的考點(diǎn)是圓的方程的綜合應(yīng)用,主要考查圓的標(biāo)準(zhǔn)方程,點(diǎn)與圓的位置關(guān)系,體現(xiàn)了轉(zhuǎn)化及數(shù)形結(jié)合的數(shù)學(xué)思想.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

5.已知數(shù)列{an}中,a1=3,a2=6,an+2=an+1-an,則a2015=( 。
A.-6B.6C.-3D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

6.已知函數(shù)f(x)=2x(x∈R),
(1)解不等式f(x)-f(2x)>16-9×2x;
(2)若函數(shù)q(x)=f(x)-f(2x)-m在[-1,1]上有零點(diǎn),求m的取值范圍;
(3)若函數(shù)f(x)=g(x)+h(x),其中g(shù)(x)為奇函數(shù),h(x)為偶函數(shù),若不等式2ag(x)+h(2x)≥0對(duì)任意x∈[1,2]恒成立,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

3.已知集合A={x|ax2+2x+1=0},若集合A有且僅有2個(gè)子集,則a的取值是(  )
A.1B.-1C.0或1D.-1,0或1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

10.如圖,在正方體A1B1C1D1-ABCD中,
(1)在正方體的12條棱中,與棱AA1是異面直線的有幾條(只要寫出結(jié)果)
(2)證明:AC∥平面A1BC1
(3)證明:AC⊥平面BDD1B1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

20.在平面直角坐標(biāo)系中,點(diǎn)P($\frac{1}{2}$,$\frac{2}{3}$)在角α的終邊上,點(diǎn)Q($\frac{1}{3}$,-1)在角β的終邊上,點(diǎn)M(sin$\frac{2π}{3}$,cos$\frac{2π}{3}$)在角γ終邊上.
(1)求sinα,cosβ,tanγ的值;
(2)求sin(α+2β)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

7.已知中心在坐標(biāo)原點(diǎn)的橢圓E的長(zhǎng)軸的一個(gè)端點(diǎn)是拋物線y2=4$\sqrt{5}$x的焦點(diǎn),且橢圓E的離心率是$\frac{\sqrt{5}}{5}$
(1)求橢圓E的方程;
(2)過(guò)點(diǎn)C(-1,0)的動(dòng)直線與橢圓E相交于A,B兩點(diǎn).若線段AB的中點(diǎn)的橫坐標(biāo)是-$\frac{1}{2}$,求直線AB的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

4.下列函數(shù)中,在區(qū)間[0,2]上是增函數(shù)的是( 。
A.y=x2-4x+5B.y=log${\;}_{\frac{1}{2}}$xC.y=2-xD.y=$\sqrt{x}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

5.函數(shù)f(x)=-$\frac{1}{3}$x3+$\frac{1}{2}$x2+2x取極小值時(shí),x的值是-1.

查看答案和解析>>

同步練習(xí)冊(cè)答案