【題目】已知直線, .
(1)當時,直線過與的交點,且它在兩坐標軸上的截距相反,求直線的方程;
(2)若坐標原點到直線的距離為,判斷與的位置關系.
【答案】(1)或;(2)或
【解析】試題分析:(1)聯(lián)立解得與的交點為(-21,-9),當直線過原點時,直線的方程為;當直線不過原點時,設的方程為,將(-21,-9)代入得,解得所求直線方程(2)設原點到直線的距離為,則,解得: 或,分情況根據斜率關系判斷兩直線的位置關系;
試題解析:
解:(1)聯(lián)立解得即與的交點為(021,-9).
當直線過原點時,直線的方程為;
當直線不過原點時,設的方程為,將(-21,-9)代入得,
所以直線的方程為,故滿足條件的直線方程為或.
(2)設原點到直線的距離為,
則,解得: 或,
當時,直線的方程為,此時;
當時,直線的方程為,此時.
科目:高中數(shù)學 來源: 題型:
【題目】如圖所示,某公園內有兩條道路,,現(xiàn)計劃在上選擇一點,新建道路,并把所在的區(qū)域改造成綠化區(qū)域.已知, .
(1)若綠化區(qū)域的面積為1,求道路的長度;
(2)若綠化區(qū)域改造成本為10萬元/,新建道路成本為10萬元/.設(),當為何值時,該計劃所需總費用最。
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù) ,且在上單調遞增,且函數(shù)與的圖象恰有兩個不同的交點,則實數(shù)的取值范圍是( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù).
(1)討論函數(shù)的單調性;
(2)若函數(shù)在處取得極值,不等式對恒成立,求實數(shù)的取值范圍;
(3)當時,證明不等式.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖所示,三國時代數(shù)學家趙爽在《周髀算經》中利用弦圖,給出了勾股定理的絕妙證明.圖中包含四個全等的直角三角形及一個小正方形(陰影),設直角三角形有一內角為,若向弦圖內隨機拋擲500顆米粒(大小忽略不計,取),則落在小正方形(陰影)內的米粒數(shù)大約為( )
A. 134 B. 67 C. 200 D. 250
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知圓關于直線對稱,圓心C在第二象限,半徑為.
(1)求圓C的方程.
(2)是否存在直線l與圓C相切,且在x軸、y軸上的截距相等?若存在,寫出滿足條件的直線條數(shù)(不要求過程);若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】圓與軸交于、兩點(點在點的左側),、是分別過、點的圓的切線,過此圓上的另一個點(點是圓上任一不與、重合的動點)作此圓的切線,分別交、于、兩點,且、兩直線交于點.
()設切點坐標為,求證:切線的方程為.
()設點坐標為,試寫出與的關系表達式(寫出詳細推理與計算過程).
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖所示的幾何體中,垂直于梯形所在的平面,為的中點,,四邊形為矩形,線段交于點.
(1)求證:平面;
(2)求二面角的正弦值;
(3)在線段上是否存在一點,使得與平面所成角的大小為?若存在,求出的長;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】橢圓的兩個焦點,,設,分別是橢圓的上、下頂點,且四邊形的面積為,其內切圓周長為.
(1)求橢圓的方程;
(2)當時,,為橢圓上的動點,且,試問:直線是否恒過一定點?若是,求出此定點坐標,若不是,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com