分析 (1)分別以AB、AD、AP所在直線為x、y、z軸,建立如圖所示的空間直角坐標(biāo)系,利用向量法能證明BD⊥平面PAC.
(2)求出平面BDP的法向量和平面ABD的法向量,利用向量法能求出平面PBD與平面BDA的夾角.
解答 證明:(1)∵在底面為直角梯形的四棱錐P-ABCD中,AD∥BC,∠ABC=90°,PA⊥平面ABCD,
∴由題可知,AP、AD、AB兩兩垂直,
分別以AB、AD、AP所在直線為x、y、z軸,建立如圖所示的空間直角坐標(biāo)系,
則A(0,0,0),B($\sqrt{3}$,0,0),C(2$\sqrt{3}$,6,0),D(0,2,0),P(0,0,3),
$\overrightarrow{AP}$=(0,0,3),$\overrightarrow{AC}$=(2$\sqrt{3}$,6,0),$\overrightarrow{BD}$=(-2$\sqrt{3}$,2,0),
∴$\overrightarrow{BD}•\overrightarrow{AP}$=0,$\overrightarrow{BD}•\overrightarrow{AC}$=0,
∴BD⊥AP,BD⊥AC,
又PA∩AC=A,∴BD⊥平面PAC,
解:(2)設(shè)平面BDP的法向量$\overrightarrow{n}$=(x,y,z),
∵$\overrightarrow{BD}$=(-2$\sqrt{3}$,2,0),$\overrightarrow{BP}$=(-2$\sqrt{3}$,0,3),
∴$\left\{\begin{array}{l}{\overrightarrow{n}•\overrightarrow{BD}=-2\sqrt{3}x+2y=0}\\{\overrightarrow{n}•\overrightarrow{BP}=-2\sqrt{3}x+3z=0}\end{array}\right.$,取x=$\sqrt{3}$,得$\overrightarrow{n}$=($\sqrt{3},3,2$),
平面ABD的法向量$\overrightarrow{m}$=(0,0,1),
設(shè)平面PBD與平面BDA的夾角為θ,
則cosθ=$\frac{|\overrightarrow{m}•\overrightarrow{n}|}{|\overrightarrow{m}|•|\overrightarrow{n}|}$=$\frac{2}{\sqrt{16}}$=$\frac{1}{2}$,∴θ=60°,
∴平面PBD與平面BDA的夾角為60°.
點(diǎn)評(píng) 本題考查線面垂直的證明,考查二面角的求法,是中檔題,解題時(shí)要認(rèn)真審題,注意向量法的合理運(yùn)用.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
零件的個(gè)數(shù)x(個(gè)) | 2 | 3 | 4 | 5 |
加工的時(shí)間y(小時(shí)) | 2.5 | 3 | 4 | 4.5 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com