下列函數(shù)中,不具有奇偶性的是( 。
A、y=x2-1
B、y=sinxcosx
C、y=
1-2x
+
2x-1
D、y=lgx2
考點:函數(shù)奇偶性的判斷
專題:函數(shù)的性質(zhì)及應(yīng)用
分析:根據(jù)函數(shù)奇偶性的定義分別進行判斷即可.
解答: 解:y=x2-1為偶函數(shù),
y=sinxcosx=
1
2
sin2x,為奇函數(shù).
1-2x≥0
2x-1≥0
,即x=
1
2
,定義域為{
1
2
},關(guān)于原點不對稱,為非奇非偶函數(shù),
y=y=lgx2為偶函數(shù),
故不具有奇偶性的是C,
故選:C
點評:本題主要考查函數(shù)奇偶性的判斷,比較基礎(chǔ).
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

直三棱柱ABC-A1B1C1中,∠BAC=90°,AB=AC=AA1=2,M、N分別是BC、CC1的中點.求證:B1M⊥平面AMN.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(x2+
1
x2
-2)4的展開項中常數(shù)項為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知a,b為正數(shù),則“a+b≤2“是“
a
+
b
≤2“成立的( 。
A、充分非必要條件
B、必要非充分條件
C、充分必要條件
D、既非充分也非必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

下列命題:
①標(biāo)準(zhǔn)差越小,則反映樣本數(shù)據(jù)的離散程度越大;
②在回歸直線方程
y
=-0.4x+3中,當(dāng)解釋變量x每增加1個單位時,則預(yù)報變量y減少0.4個單位;
③對分類變量X與Y來說,它們的隨機變量K2的觀測值k越小,“X與Y有關(guān)系”的把握程度越大;
④在回歸分析模型中,殘差平方和越小,說明模型的擬合效果越好.
其中正確的命題是(  )
A、②③B、①④C、②④D、①③

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}滿足a1=2,a2=1,且
an+1
an+1-an
=
an-1
an-an-1
(n≥2).
(Ⅰ)求數(shù)列{an}的通項公式;
(Ⅱ)令bn=
1
2
anan+2,記數(shù)列{bn}的前n項和為Sn,試求使Sn<m-
1
2
恒成立的m的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知正方形ABCD的邊長為2,P為其外接圓上一動點,則
AB
AP
的最大值為( 。
A、2+2
2
B、2+
2
C、2+2
3
D、2+
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知f(n)=
n,n為奇數(shù)
-n,n為偶數(shù)
若 an=f(n)+f(n+1),則a1+a2+…+a2014=(  )
A、-1B、2012
C、0D、-2012

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)x,y∈R,則“x>y>0”是“
x
y
>1”的
 
條件.

查看答案和解析>>

同步練習(xí)冊答案