【題目】某花圃為提高某品種花苗質(zhì)量,開展技術(shù)創(chuàng)新活動,在A,B實驗地分別用甲、乙方法培育該品種花苗.為觀測其生長情況,分別在實驗地隨機抽取各50株,對每株進行綜合評分,將每株所得的綜合評分制成如圖所示的頻率分布直方圖.記綜合評分為80及以上的花苗為優(yōu)質(zhì)花苗.
(1)求圖中a的值;
(2)用樣本估計總體,以頻率作為概率,若在A,B兩塊試驗地隨機抽取3棵花苗,求所抽取的花苗中的優(yōu)質(zhì)花苗數(shù)的分布列和數(shù)學(xué)期望.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】學(xué)校游園活動有這樣一個游戲項目:甲箱子里裝有3個白球、2個黑球,乙箱子里裝有1個白球、2個黑球,這些球除顏色外完全相同.每次游戲從這兩個箱子里各隨機摸出2個球,若摸出的白球不少于2個,則獲獎.(每次游戲結(jié)束后將球放回原箱)
(1)求在1次游戲中,
①摸出3個白球的概率;
②獲獎的概率;
(2)求在2次游戲中獲獎次數(shù)的分布列.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】求下列函數(shù)的單調(diào)區(qū)間,并指出該函數(shù)在其單調(diào)區(qū)間上是增函數(shù)還是減函數(shù).
(1)f(x)=-;
(2)f(x)=
(3)f(x)=-x2+2|x|+3.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知某海濱浴場海浪的高度y(米)是時間t的(0≤t≤24,單位:小時)函數(shù),記作y=f(t),下表是某日各時的浪高數(shù)據(jù):
t(h) | 0 | 3 | 6 | 9 | 12 | 15 | 18 | 21 | 24 |
y(m) | 1.5 | 1.0 | 0.5 | 1.0 | 1.5 | 1.0 | 0.5 | 0.99 | 1.5 |
經(jīng)長期觀測,y=f(t)的曲線可近似地看成是函數(shù)y=Acosωt+b的圖象.
(1)根據(jù)以上數(shù)據(jù),求出函數(shù)y=Acosωt+b的最小正周期T、振幅A及函數(shù)表達式;
(2)依據(jù)規(guī)定,當(dāng)海浪高度高于1米時才對沖浪愛好者開放,請依據(jù)(1)的結(jié)論,判斷一天內(nèi)的上午8時到晚上20時之間,有多長時間可供沖浪者進行運動?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】高三(3)班學(xué)生要安排畢業(yè)晚會的3個音樂節(jié)目,2個舞蹈節(jié)目和1個曲藝節(jié)目的演出順序,要求2個舞蹈節(jié)目不連排,3個音樂節(jié)目恰有2個節(jié)目連排,則不同排法的種數(shù)是________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某水果批發(fā)商銷售進價為每箱40元的蘋果,假設(shè)每箱售價不低于50元且不得高于55元,市場調(diào)查發(fā)現(xiàn),若每箱以50元的價格銷售,平均每天銷售90箱,價格每提高1元,平均每天少銷售3箱.
(1)求平均每天的銷售量y(箱)與銷售單價x(元/箱)之間的函數(shù)關(guān)系式.
(2)求該批發(fā)商平均每天的銷售利潤w(元)與銷售單價x(元/箱)之間的函數(shù)關(guān)系式.
(3)當(dāng)每箱蘋果的售價為多少元時,每天可以獲得最大利潤?最大利潤是多少?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=ex-ax-1,其中e是自然對數(shù)的底數(shù),實數(shù)a是常數(shù).
(1)設(shè)a=e,求函數(shù)f(x)的圖象在點(1,f(1))處的切線方程;
(2)討論函數(shù)f(x)的單調(diào)性.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】△ABC在內(nèi)角A、B、C的對邊分別為a,b,c,已知a=bcosC+csinB.
(Ⅰ)求B;
(Ⅱ)若b=2,求△ABC面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某機構(gòu)為了解某地區(qū)中學(xué)生在校月消費情況,隨機抽取了100名中學(xué)生進行調(diào)查.右圖是根據(jù)調(diào)查的結(jié)果繪制的學(xué)生在校月消費金額的頻率分布直方圖.已知[350,450),[450,550),[550,650)三個金額段的學(xué)生人數(shù)成等差數(shù)列,將月消費金額不低于550元的學(xué)生稱為“高消費群” .
(1)求m,n的值,并求這100名學(xué)生月消費金額的樣本平均數(shù)(同一組中的數(shù)據(jù)用該組區(qū)間的中點值作代表);
(2)根據(jù)已知條件完成下面2×2列聯(lián)表,并判斷能否有90%的把握認(rèn)為“高消費群”與性別有關(guān)?
高消費群 | 非高消費群 | 合計 | |
男 | |||
女 | 10 | 50 | |
合計 |
(參考公式:,其中)
P() | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com