設(shè)f(x)=
x2,x∈[0,1]
2-x,x∈(1,2]
,則
2
0
f(x)dx等于( 。
A、
3
4
B、
4
5
C、
5
6
D、不存在
考點:定積分
專題:導(dǎo)數(shù)的概念及應(yīng)用
分析:原積分化為
2
0
f(x)dx=
1
0
x2dx+
2
1
(2-x)dx,根據(jù)定積分的計算法則計算即可
解答: 解:
2
0
f(x)dx=
1
0
x2dx+
2
1
(2-x)dx=
1
3
x3|
 
1
0
+(2x-
1
2
x2)|
 
2
1
=
1
3
+(2×2-
1
2
×22)-(2-
1
2
)=
1
3
+4-2-2+
1
2
=
5
6

故選:C
點評:本題考查了定積分的計算,關(guān)鍵是求出原函數(shù),屬于基礎(chǔ)題,
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學(xué) 來源: 題型:

當a為何值時,方程x3-3x2-a=0恰有一個實根、兩個不等實根、三個不等實根或者有沒有可能無實根?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知樣本6,7,8,9,m的平均數(shù)是8,則標準差是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(1-
x
5的展開式x2的系數(shù)是(  )
A、-5B、5C、-10D、10

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,四棱錐P-ABCD,側(cè)面PAD是邊長為2的正三角形,且與底面垂直,底面ABCD是∠ABC=60°的菱形,M為PC的中點.
(Ⅰ) 求證:PC⊥AD;
(Ⅱ) 在棱PB上是否存在一點Q,使得A,Q,M,D四點共面?若存在,指出點Q的位置并證明;若不存在,請說明理由;
(Ⅲ) 求點D到平面PAM的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,在正三棱柱ABC-A1B1C1中,E,F(xiàn)分別為BB1,AC的中點.
(1)求證:BF∥平面A1EC;
(2)若AB=AA1=2,求點A到平面A1EC的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

f(x)為一次函數(shù),若f(2x-1)+2f(3x+4)=2x+1,求f(x)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=x2-1,g(x)=a|x-1|.
(1)若x∈R時,不等式f(x)≥g(x)恒成立,求實數(shù)a的取值范圍;
(2)求函數(shù)h(x)=|f(x)|+g(x)在區(qū)間[-2,2]上的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知實數(shù)x,y滿足
y≤x-1
x≤3
x+y≥4
,則
y
x
的最小值是
 

查看答案和解析>>

同步練習冊答案