解答:
(Ⅰ)證法一:取AD中點(diǎn)O,連結(jié)OP,OC,AC,
依題意可知△PAD,△ACD均為正三角形,
所以O(shè)C⊥AD,OP⊥AD,又OC∩OP=O,OC?平面POC,OP?平面POC,
所以AD⊥平面POC,又PC?平面POC,
所以PC⊥AD.
證法二:連結(jié)AC,依題意可知△PAD,△ACD均為正三角形,
又M為PC的中點(diǎn),所以AM⊥PC,DM⊥PC,
又AM∩DM=M,AM?平面AMD,DM?平面AMD,
所以PC⊥平面AMD,
又AD?平面AMD,所以PC⊥AD.
(Ⅱ)解:當(dāng)點(diǎn)Q為棱PB的中點(diǎn)時(shí),A,Q,M,D四點(diǎn)共面,
證明如下:
取棱PB的中點(diǎn)Q,連結(jié)QM,QA,又M為PC的中點(diǎn),所以QM∥BC,
在菱形ABCD中AD∥BC,所以QM∥AD,
所以A,Q,M,D四點(diǎn)共面.
(Ⅲ)解:點(diǎn)D到平面PAM的距離即點(diǎn)D到平面PAC的距離,
由(Ⅰ)可知PO⊥AD,又平面PAD⊥平面ABCD,
平面PAD∩平面ABCD=AD,PO?平面PAD,
所以PO⊥平面ABCD,即PO為三棱錐P-ACD的體高.
在Rt△POC中,
PO=OC=,
PC=,
在△PAC中,PA=AC=2,
PC=,邊PC上的高AM=
=,
所以△PAC的面積
S△PAC=PC•AM=××=,
設(shè)點(diǎn)D到平面PAC的距離為h,
由V
D-PAC=V
P-ACD得
S△PAC•h=S△ACD•PO,
又
S△ACD=×22=,
所以
וh=××,
解得
h=,
所以點(diǎn)D到平面PAM的距離為
.