【題目】商場銷售某一品牌的羊毛衫,購買人數(shù)是羊毛衫標(biāo)價的一次函數(shù),標(biāo)價越高,購買人數(shù)越少.把購買人數(shù)為零時的最低標(biāo)價稱為無效價格,已知無效價格為每件300元.現(xiàn)在這種羊毛衫的成本價是100元/ 件,商場以高于成本價的價格(標(biāo)價)出售. 問:
(1)商場要獲取最大利潤,羊毛衫的標(biāo)價應(yīng)定為每件多少元?
(2)通常情況下,獲取最大利潤只是一種“理想結(jié)果”,如果商場要獲得最大利潤的75%,那么羊毛衫的標(biāo)價為每件多少元?
【答案】(1)200元;(2)250元或150元.
【解析】試題分析:(1)設(shè)出函數(shù)的解析式,確定利潤函數(shù),利用配方法,即可求出最大利潤和羊毛衫的標(biāo)價;(2)利用商場要獲得的最大利潤的,建立方程,即可求得結(jié)論.
試題解析:(1)設(shè)購買人數(shù)為人,羊毛衫的標(biāo)價為每件元,利潤為元,
則, ,
由題意,得,即,
∴,
∴ (),
∵,
∴時,,
即商場要獲取最大利潤,羊毛衫的標(biāo)價應(yīng)定為每件200元.
(2)解:由題意得,
,解得或,
所以,商場要獲取最大利潤的,每件標(biāo)價為250元或150元.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,正方體 中, 分別是 的中點(diǎn),將 沿 折起,使 .
(1)證明: 平面 ;
(2)求二面角 的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,一個角形海灣AOB,∠AOB=2θ(常數(shù)θ為銳角).?dāng)M用長度為l(l為常數(shù))的圍網(wǎng)圍成一個養(yǎng)殖區(qū),有以下兩種方案可供選擇:
方案一 如圖1,圍成扇形養(yǎng)殖區(qū)OPQ,其中=l;
方案二 如圖2,圍成三角形養(yǎng)殖區(qū)OCD,其中CD=l;
(1)求方案一中養(yǎng)殖區(qū)的面積S1 ;
(2)求證:方案二中養(yǎng)殖區(qū)的最大面積S2= ;
(3)為使養(yǎng)殖區(qū)的面積最大,應(yīng)選擇何種方案?并說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知定義在(0,+∞)上的函數(shù)f(x)滿足f′(x)+2f(x)= ,且f(1)= ,則不等式f(lnx)>f(3)的解集為( )
A.(﹣∞,e3)
B.(0,e3)
C.(1,e3)
D.(e3 , +∞)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知關(guān)于x的一元二次方程.
(1)若a、b是一枚骰子擲兩次所得到的點(diǎn)數(shù),求方程有兩正根的概率;
(2)若a∈[2,4],b∈[0,6],求方程沒有實(shí)根的概率
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知正方形的對角線與相交于點(diǎn),將沿對角線折起,使得平面平面(如圖),則下列命題中正確的是( )
A. 直線直線,且直線直線
B. 直線平面,且直線平面
C. 平面平面,且平面平面
D. 平面平面,且平面平面
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓C: 的右焦點(diǎn)為F,不垂直x軸且不過F點(diǎn)的直線l與橢圓C相交于A,B兩點(diǎn).
(Ⅰ)若直線l經(jīng)過點(diǎn)P(2,0),則直線FA、FB的斜率之和是否為定值?若是,求出該定值;若不是,請說明理由;
(Ⅱ)如果FA⊥FB,原點(diǎn)到直線l的距離為d,求d的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com